Lingkaran: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Badak Jawa (bicara | kontrib) Tidak ada ringkasan suntingan Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Mainarticle -> "Main" | t=89 su=1 in=1 at=1 -- only 31 edits left of totally 33 possible edits | edr=000-0010(!!!) ovr=010-1111 aft=000-0010 |
||
Baris 86:
:<math>\int \mathrm dA = \int_{r=0}^R \int_{\theta=0}^{2\pi} r \, \mathrm d\theta \, \mathrm dr
= \int_{r=0}^R r \, \mathrm dr \int_{\theta=0}^{2\pi} \, \mathrm d\theta
= \frac 1 2 (R^2-0^2) \ (2\pi-0) = \pi R^2</math>.
Baris 186:
== π (Pi) ==
{{
Nilai [[pi]] adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu perbandingan dari keliling ''K'' dengan diameternya ''D'':{{#tag:ref|π merupakan bilangan irasional, dimana jumlah bilangan desimal π tidak terhingga (π = 3.141592653589793238462643383...).<ref>{{Cite web|url=https://www.mathsisfun.com/irrational-numbers.html|title=Irrational Numbers|dead-url=yes|access-date=2019-08-12|archive-date=2019-08-12|archive-url=https://web.archive.org/web/20190812094145/https://www.mathsisfun.com/irrational-numbers.html}}</ref><ref>{{Cite web|url=https://mindyourdecisions.com/blog/2013/11/08/proving-pi-is-irrational-a-step-by-step-guide-to-a-simple-proof/|title=Proving Pi is Irrational: a step-by-step guide to a “simple proof” requiring only high school calculus – Mind Your Decisions}}</ref><ref>{{Cite web|url=https://crypto.stanford.edu/pbc/notes/pi/irrationalpi.html|title=Pi - Proof that Pi is Irrational|website=crypto.stanford.edu}}</ref>|group=lower-alpha}}
|