Pengguna:Dedhert.Jr/Uji halaman 12: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) Tidak ada ringkasan suntingan |
Dedhert.Jr (bicara | kontrib) |
||
(39 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 2:
[[Daftar identitas trigonometri|Identitas trigonometri]] merupakan suatu [[Identitas (matematika)|identitas]] yang mencakup berbagai rumus-rumus [[trigonometri]] untuk mengkomputasi bentuk-bentuk yang elusif menjadi lebih mudah. Untuk memverifikasi suatu identitas trigonometri, dibutuhkanlah suatu bukti-bukti identitas trigonometri. Berikut adalah kumpulan bukti-bukti identitas trigonometri.
== Fungsi trigonometri elementer ==
=== Definisi fungsi trigonometri ===
[[Berkas:Trigonometric Triangle.svg|jmpl|373x373px|[[Segitiga siku-siku]] <math>ABC</math>, dengan <math>\angle A = \theta</math>, <math>AB = h</math> adalah [[hipotenusa]], <math>BC = a</math> adalah sisi depan dan <math>AC = b</math> adalah sisi samping]]
Untuk memulai pemahaman identitas,
<!--Penggunaan pranala di judul bagian [[wikipedia:Pedoman gaya#Markah|sebaiknya dihindari]]. Pranala dapat ditambahkan pada kemunculan pertama kata tersebut, atau dengan menambahkan [[Templat:Main]] (atau sejenisnya) di bawah judul bagian. Melihat panjang dari setiap paragraf fungsi trigonometri elementer yang singkat, dan isinya hanya memperkenalkan fungsi-fungsi, ada baiknya bagian "Sinus dan kosinus" sampai "Kosekan, sekan, dan kotangen" dilebur menjadi satu, misalnya dalam bentuk tabel.-->
====
{{Main|Sinus (trigonometri)|Kosinus}}
Secara geometri, sinus pada sudut <math>\theta</math> sama dengan rasio sisi depan dengan [[hipotenusa]], sementara kosinus pada sudut <math>\theta</math> sama dengan rasio sisi samping dengan hipotenusa. Misal <math>a</math>, <math>b</math>, dan <math>h</math> adalah sisi depan, sisi miring, dan hipotenusa.
Baris 17 ⟶ 19:
{{div col end}}
====
Secara geometri, [[tangen]] pada <math>\theta</math> sama dengan rasio sisi depan dengan sisi samping.
:{{NumBlk|::|<math>\tan \theta = \frac{a}{b}</math>|{{EquationRef|1.3}}}}
Baris 26 ⟶ 28:
:{{NumBlk|::|<math>\tan \theta = \frac{a}{b} = \frac{\frac{a}{h}}{\frac{b}{h}} = \frac{\sin \theta}{\cos \theta}</math>|{{EquationRef|1.4}}}}
====
Fungsi [[kosekan]], [[sekan]], dan [[kotangen]] merupakan invers perkalian dari [[sinus (trigonometri)|sinus]], [[kosinus]], dan [[tangen]]. Ketiganya dirumuskan sebagai
{{div col|colwidth=19em}}
Baris 35 ⟶ 37:
=== Identitas Pythagoras ===
[[Identitas Pythagoras]] merupakan turunan dari [[teorema Pythagoras]], yang melibatkan [[fungsi trigonometri]]. Dasar-
{{NumBlk|::|<math>\sin^2 \theta + \cos^2 \theta = 1</math>|{{EquationRef|1.8}}}}
{{NumBlk|::|<math>\tan^2 \theta + 1 = \sec^2 \theta</math>|{{EquationRef|1.9}}}}
Baris 41 ⟶ 43:
Bukti dapat dipakai menggunakan [[segitiga siku-siku]]. Pada persamaan (1.8), dengan menggunakan definisi fungsi trigonometri di atas. Hal yang serupa pada persamaan (1.9) dan (1.10).
:<math>\left.\begin{matrix}\begin{align}\sin^2 \theta + \cos^2 \theta &= \left(\frac{b}{h}\right)^2 + \left(\frac{a}{h}\right)^2 \\
&= \frac{a^2 + b^2}{h^2} \\
& = \frac{h^2}{h^2} \\
Baris 58 ⟶ 60:
\cot^2 \theta + 1 &= \left(\frac{b}{a}\right)^2 + 1 \\
&= \frac{b^2 + a^2}{a^2} \\
&= \frac{h^2}{a^2} = \left(\frac{h}{a}\right)^2 \\
&= \csc^2 \theta \qquad \blacksquare
\end{align}</math>
Pada pembuktian (1.9), <math>a^2 + b^2 = h^2</math>, yang
:<math>\left.\begin{matrix}
\begin{align}\tan^2
&= \frac{1}{\cos^2 \theta} \\
&= \sec^2 \theta
Baris 74 ⟶ 76:
&= \frac{1}{\sin^2 A\theta} \\
&= \csc^2 \theta \qquad \blacksquare
\end{align}</math>
Versi lainnya adalah menggunakan teorema Pythagoras, masing-masing <math>h^2</math>, <math>b^2</math>, dan <math>a^2</math> membagi persamaan tersebut.
:<math>\left.\begin{matrix}
\begin{align}
a^2 + b^2 &= h^2 \\
\left(\frac{a}{h}\right)^2 + \left(\frac{b}{h}\right)^2 &= \left(\frac{h}{h}\right)^2 \\
\sin^2 \theta + \cos^2 \theta &= 1
\end{align}
\\
\end{matrix}\right|
\left.
\begin{matrix}
\begin{align}
a^2 + b^2 &= h^2 \\
\left(\frac{a}{b}\right)^2 + \left(\frac{b}{b}\right)^2 &= \left(\frac{h}{b}\right)^2 \\
\tan^2 \theta + 1 &= \sec^2 \theta
\end{align}
\end{matrix}\right|
\begin{align}
a^2 + b^2 &= h^2 \\
\left(\frac{a}{a}\right)^2 + \left(\frac{b}{a}\right)^2 &= \left(\frac{h}{a}\right)^2 \\
1 + \cot^2 \theta &= \csc^2 \theta \qquad \blacksquare
\end{align}</math>
Baris 79 ⟶ 105:
== Jumlah dan selisih sudut ==
[[Berkas:TrigSumFormula.svg|jmpl|Ilustrasi rumus jumlah sudut melalui geometri.]]Jumlah dan selisih suatu sudut dirumuskan sebagai<ref>{{Cite web|date=2015-10-31|title=7.2: Sum and Difference Identities|url=https://math.libretexts.org/Bookshelves/Precalculus/Precalculus_(OpenStax)/07%3A_Trigonometric_Identities_and_Equations/7.02%3A_Sum_and_Difference_Identities|website=Mathematics LibreTexts|language=en|access-date=2021-12-02}}</ref>
:{{NumBlk|::|<math> \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta </math>|{{EquationRef|2.1}}}}
:{{NumBlk|::|<math> \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta </math>|{{EquationRef|2.2}}}}
:{{NumBlk|::|<math> \tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} </math>|{{EquationRef|2.3}}}}
:{{NumBlk|::|<math> \cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \pm 1}{\cot \beta \pm \cot \alpha} </math>|{{EquationRef|2.4}}}}
Pada rumus-rumus di atas, dapat dibuktikannya secara aljabar dengan cara mengeksploitasikan suatu [[Daftar identitas trigonometri#Refleksi sudut|identitas-identitas sudut komplementer]] tersebut. Secara geometri, diberikan <math>OQA</math> adalah [[segitiga siku-siku]], <math>OQ \bot PQ</math> sehingga <math>OPQ</math> juga merupakan segitiga siku-siku. Gambar garis vertikal dari titik <math>P</math> ke titik <math>B</math>, yang terletak di pertengahan garis <math>OA</math>. Misalkan <math>R</math> adalah titik di garis pertengahan <math>PB</math> (tetapi tidak terletak di pertengahan garis <math>OQ</math> sehingga <math>R</math> bukanlah titik perpotongan pada kedua garis <math>OQ</math> dan <math>PB</math>) sehingga <math>PQR</math> adalah segitiga dengan <math>\angle PRQ</math> adalah siku-siku. Setelah menggambarnya, diperoleh <math>\angle QOA = \angle QPR = \alpha</math>, <math>QR = AB</math>, dan <math>BR = AQ</math>.
=== Sinus ===
Secara aljabar, dapat dibuktikan menggunakan sifat <math display="inline">\sin \theta = \cos \left(\frac{\pi}{2} - \theta \right)</math> dan <math display="inline">\cos \theta = \sin \left(\frac{\pi}{2} - \theta \right)</math>, serta menggunakan (2.2).
:<math>\begin{aligned}
\sin(\alpha + \beta) &= \cos\left(\frac{\pi}{2} - (\alpha+\beta)\right) \\
&= \cos \left( \left(\frac{\pi}{2} - \alpha\right) - \beta\right) \\
&= \cos \left(\frac{\pi}{2} - \alpha\right) \cos \beta + \sin \left(\frac{\pi}{2} - \alpha\right)\sin \beta \\
&= \sin \alpha \cos \beta + \sin \beta \cos \alpha
\end{aligned}</math>
Hal yang serupa untuk membuktikan <math>\sin(\alpha - \beta) = \sin \alpha \cos \beta- \sin \beta \cos \alpha</math>. Secara geometri, untuk membuktikannya, kita perluas <math>\sin(\alpha + \beta)</math>. Diperoleh <math>PB = PR + RB</math>. Cari <math>\sin \alpha</math> di segitiga <math>OQA</math>, <math>\sin \beta</math> dan <math>\cos \alpha</math> di segitiga <math>OPQ</math>, dan <math>\cos \beta</math> di segitiga <math>PQR</math>, lalu substitusi ke <math>\sin(\alpha + \beta)</math> yang telah diperluas.
:<math>\left.
\begin{align}
\sin(\alpha + \beta) &= \frac{PB}{OP} \\
&= \frac{RB + PR}{OP} \\
&= \frac{AQ}{OP} + \frac{PR}{OP} \\
&= \frac{AQ}{OP} \cdot \frac{OQ}{OQ} + \frac{PR}{OP} \cdot \frac{PQ}{PQ} \\
&= \frac{AQ}{OQ} \cdot \frac{OQ}{OP} + \frac{PR}{PQ} \cdot \frac{PQ}{OP} \\
&= \sin \alpha \cos \beta + \sin \beta \cos \alpha \quad \blacksquare
\end{align}
\quad
\right|
\left.
\quad
\begin{align}
\sin \alpha &= \frac{AQ}{OQ} \\
\sin \beta &= \frac{PQ}{OP} \\
\cos \alpha &= \frac{PR}{OQ} \\
\cos \beta &= \frac{OQ}{OP}
\end{align}
\quad
\right.</math>
=== Kosinus ===
Secara aljabar, lagi-lagi, gunakan sifat identitas komplementer, yakni <math display="inline">\sin \theta = \cos \left(\frac{\pi}{2} - \theta \right)</math> dan <math display="inline">\cos \theta = \sin \left(\frac{\pi}{2} - \theta \right)</math> dan juga (2.1).
:<math>\begin{aligned}
\cos(\alpha + \beta) &= \sin\left(\left(\frac{\pi}{2} - \alpha\right) - \beta \right) \\
&= \sin\left(\frac{\pi}{2} - \alpha\right) \cos \beta - \sin \alpha \cos \left(\frac{\pi}{2} - \alpha\right) \\
&= \cos \alpha \cos \beta - \sin \alpha \sin \beta
\end{aligned}</math>
Hal yang serupa untuk membuktikan <math>\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta</math>.
=== Tangen ===
<!-- Sebaiknya setiap judul bagian dalam suatu artikel bersifat [[Wikipedia:Pedoman_gaya#Markah|unik]]. Hal ini akan mempermudah jika ada penyunting lain ingin memberikan pranala ke judul bagian tertentu.-->
Secara aljabar, tidak dapat menggunakan identitas sudut komplementer, melainkan menggunakan (1.4) beserta (2.1) dan (2.2), lalu membagi pembilang dan penyebut pada pecahan tersebut dengan <math>\cos \alpha \cos \beta</math>.
:<math>\begin{align}
\tan(\alpha + \beta) &= \frac{\sin(\alpha +\beta)}{\cos(\alpha + \beta)} \\
&= \frac{\sin \alpha \cos \beta + \sin \beta \cos \alpha}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} \\
&= \frac{\sin \alpha \cos \beta + \sin \beta \cos \alpha}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} \cdot \frac{\frac{1}{\cos \alpha \cos \beta}}{\frac{1}{\cos \alpha \cos \beta}} \qquad \text{ bagi penyebut dan pembilang dengan } \cos \alpha \cos \beta \\
&= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}
\end{align}</math>
Hal yang serupa untuk membuktikan <math>\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}</math>.
=== Kotangen ===
Secara aljabar, dapat dilakukan dengan cara yang serupa, cukup membagi pembilang dan penyebut pada pecahan tersebut dengan <math>\sin \alpha \sin \beta</math>.
:<math>\begin{align}
\cot(\alpha + \beta) &= \frac{\cos(\alpha + \beta)}{\sin(\alpha + \beta)} \\
&= \frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \cos \beta + \sin \beta \cos \alpha} \\
&= \frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\sin \alpha \cos \beta + \sin \beta \cos \alpha} \cdot \frac{\frac{1}{\sin \alpha \sin \beta}}{\frac{1}{\sin \alpha \sin \beta}} \qquad \text{ bagi penyebut dan pembilang dengan } \sin \alpha \sin \beta \\
&= \frac{\cot \alpha \cot \beta - 1}{\cot \beta + \cot \alpha}
\end{align}</math>
Hal yang serupa untuk membuktikan <math>\cot(\alpha - \beta) = \frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}</math>.
Secara geometri,<ref>{{Cite web|title=Proof of cot(A+B) {{!}} cot(x+y) formula in Geometric Method|url=https://www.mathdoubts.com/cot-angle-sum-identity-proof/|website=www.mathdoubts.com|language=en|access-date=2021-12-11}}</ref> diperoleh bahwa <math>OB = OA - AB</math> dan <math>PB = PR + RB = PR + AQ</math>. Pada segitiga siku-siku <math>OQP</math> dan <math>OAQ</math>, diperoleh <math display="inline">\cot \alpha = \frac{OA}{AQ}</math> dan <math display="inline">\cot \alpha = \frac{PR}{QR}</math> jika dan hanya jika <math>OA = AQ \cot \alpha</math>, dan <math>PR = QR \cot \alpha</math>.
:<math>\cot (\alpha + \beta) = \frac{OQ}{QB} = \frac{OA - AB}{PR + AQ} = \frac{AQ \cot \alpha - AB}{QR \cot \alpha + RB} = \frac{QR \left(\frac{AQ}{QR} \cot \alpha - \frac{AB}{QR} \right)}{QR \left(\cot \alpha + \frac{AQ}{QR}\right)} = \frac{\frac{AQ}{QR} \cot \alpha - 1}{\cot \alpha + \frac{AQ}{QR}}</math>
Selanjutnya, <math display="inline">\sin \alpha = \frac{AQ}{OQ}</math> dan <math display="inline">\sin \alpha = \frac{QR}{PR}</math>, maka <math display="inline">\frac{AQ}{OQ} = \frac{QR}{PQ}</math> jika dan hanya jika <math display="inline">\frac{AQ}{QR} = \frac{OQ}{PQ}</math>. Karena <math display="inline">\cot \beta = \frac{OQ}{PQ}</math>, maka
:<math>\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}</math>. <math>\blacksquare</math>
== Sudut rangkap ==
Sudut rangkap merupakan sudut yang dimana suatu variabel yang sama ditambahkan oleh variabel tersendiri. Berikut adalah rumus sudut <math>n</math>-rangkap beserta buktinya.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Multiple-Angle Formulas|url=https://mathworld.wolfram.com/Multiple-AngleFormulas.html|website=mathworld.wolfram.com|language=en|access-date=2021-11-29}}</ref>
{{NumBlk|::|<math>\sin(nx) = \sum_{k=0}^n \binom{n}{k}\cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right)</math>|{{EquationRef|3.1}}}}
{{NumBlk|::|<math>\cos(nx) = \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cos \left(\frac{\pi}{2}(n-k)\right)</math>|{{EquationRef|3.2}}}}
Gunakan [[Daftar identitas trigonometri#Definisi eksponensiasi|definisi eksponensiasi]] dan [[teorema binomial]]. Maka, dengan mengeksploitasikan aljabar akan kita peroleh rumus di atas.
:<math>\left.\begin{align}
\sin(nx) &= \frac{e^{inx} - e^{-inx}}{2i} \\
&= \frac{(e^{ix})^n - (e^{-ix})^n}{2i} \\
&= \frac{(\cos(x) + i \sin (x))^n - (\cos (x) - i \sin (x))^n}{2i} \\
&= \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} - (\cos^k x (-i \sin x)^{n-k})}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} - (-i)^{n-k}}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right) \qquad \blacksquare
\end{align}
\quad
\right|
\quad
\begin{align}
\cos(nx) &= \frac{e^{inx} + e^{-inx}}{2i} \\
&= \frac{(e^{ix})^n + (e^{-ix})^n}{2i} \\
&= \frac{(\cos(x) + i \sin (x))^n + (\cos (x) - i \sin (x))^n}{2i} \\
&= \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} + (\cos^k x (-i \sin x)^{n-k})}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} + (-i)^{n-k}}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cos \left(\frac{\pi}{2}(n-k)\right) \qquad \blacksquare
\end{align}</math>
== Rujukan ==
|