Pengguna:Dedhert.Jr/Uji halaman 12: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Dedhert.Jr (bicara | kontrib)
 
(1 revisi perantara oleh pengguna yang sama tidak ditampilkan)
Baris 193:
 
{{NumBlk|::|<math>\sin(nx) = \sum_{k=0}^n \binom{n}{k}\cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right)</math>|{{EquationRef|3.1}}}}
{{collapse bottom}}NumBlk|::|<math>\cos(nx) = \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cos \left(\frac{\pi}{2}(n-k)\right)</math>|{{collapse topEquationRef|title=Klik "tampil" 'tuk melihat bukti3.2}}}}
 
Gunakan [[Daftar identitas trigonometri#Definisi eksponensiasi|definisi eksponensiasi]] dan [[teorema binomial]]. Maka, dengan mengeksploitasikan aljabar akan kita peroleh rumus di atas.
Baris 201 ⟶ 202:
&= \frac{(\cos(x) + i \sin (x))^n - (\cos (x) - i \sin (x))^n}{2i} \\
&= \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} - (\cos^k x (-i \sin x)^{n-k})}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} - (-i)^{n-k}}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right) \qquad \blacksquare
\end{align}
\quad
\right|</math><math>\sin nx = \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} - (\cos^k x (-i \sin x)^{n-k})}{2i}
\right|
= \sum_{k=0}^n \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} - (-i)^{n-k}}{2i}
\quad
= \sum_{k=0}^n \cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right)</math>. <math>\blacksquare</math>
\begin{align}
{{collapse bottom}}<math>\cos(nx) = \sum_{k=0}^n \binom{n}{k}\cos^k x \sin^{n-k} x \cos \left(\frac{\pi}{2}(n-k)\right)</math>{{collapse top|title=Klik "tampil" 'tuk melihat bukti}}
\cos(nx) &= \frac{e^{inx} + e^{-inx}}{2i} \\
Dengan menggunakan cara yang serupa,
&= \frac{(e^{ix})^n + (e^{-ix})^n}{2i} \\
 
:<math>\cos(nx) = \frac{e^{inx} + e^{-inx}}{2i} = \frac{(e^{ix})^n + (e^{-ix})^n}{2i} &= \frac{(\cos(x) + i \sin (x))^n + (\cos (x) - i \sin (x))^n}{2i}</math> \\
\right|</math><math>\sin nx &= \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} -+ (\cos^k x (-i \sin x)^{n-k})}{2i} \\
 
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} -+ (-i)^{n-k}}{2i} \\
Lagi, menggunakan [[teorema binomial]] memperoleh
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \sincos \left(\frac{\pi}{2}(n-k)\right)</math>. <math>\qquad \blacksquare</math>
 
\end{align}</math>
:<math>\cos nx = \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} + (\cos^k x (-i \sin x)^{n-k})}{2i}
= \sum_{k=0}^n \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} + (-i)^{n-k}}{2i}
= \sum_{k=0}^n \cos^k x \sin^{n-k} x \cos \left(\frac{\pi}{2}(n-k)\right)</math>. <math>\blacksquare</math>
{{collapse bottom}}
 
 
== Rujukan ==