Pengguna:Dedhert.Jr/Uji halaman 12: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) |
Dedhert.Jr (bicara | kontrib) |
||
(1 revisi perantara oleh pengguna yang sama tidak ditampilkan) | |||
Baris 193:
{{NumBlk|::|<math>\sin(nx) = \sum_{k=0}^n \binom{n}{k}\cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right)</math>|{{EquationRef|3.1}}}}
{{
Gunakan [[Daftar identitas trigonometri#Definisi eksponensiasi|definisi eksponensiasi]] dan [[teorema binomial]]. Maka, dengan mengeksploitasikan aljabar akan kita peroleh rumus di atas.
Baris 201 ⟶ 202:
&= \frac{(\cos(x) + i \sin (x))^n - (\cos (x) - i \sin (x))^n}{2i} \\
&= \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} - (\cos^k x (-i \sin x)^{n-k})}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} - (-i)^{n-k}}{2i} \\
&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right) \qquad \blacksquare
\end{align}
\quad
\right|</math><math>\sin nx = \sum_{k=1}^n \binom{n}{k} \frac{\cos^k x (i \sin x)^{n-k} - (\cos^k x (-i \sin x)^{n-k})}{2i}▼
\right|
= \sum_{k=0}^n \cos^k x \sin^{n-k} x \cdot \frac{i^{n-k} - (-i)^{n-k}}{2i}▼
\quad
= \sum_{k=0}^n \cos^k x \sin^{n-k} x \sin \left(\frac{\pi}{2}(n-k)\right)</math>. <math>\blacksquare</math>▼
\begin{align}
▲{{collapse bottom}}<math>\cos(nx) = \sum_{k=0}^n \binom{n}{k}\cos^k x \sin^{n-k} x \cos \left(\frac{\pi}{2}(n-k)\right)</math>{{collapse top|title=Klik "tampil" 'tuk melihat bukti}}
\cos(nx) &= \frac{e^{inx} + e^{-inx}}{2i} \\
&= \frac{(e^{ix})^n + (e^{-ix})^n}{2i} \\
▲
▲&= \sum_{k=0}^n \binom{n}{k} \cos^k x \sin^{n-k} x \
\end{align}</math>
== Rujukan ==
|