Frustum: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) Tidak ada ringkasan suntingan |
|||
(24 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 1:
{{Infobox polyhedron
| name =
| image = [[Berkas:
| caption = Contoh: Frustum [[
| faces =
| edges =
| vertices =
| simmetry = [[
| dual = bipiramida segi-<math>n</math> siku-siku asimetrik cembung
| properties =
}}
Dalam [[geometri]], '''frustum''' adalah suatu bagian dari [[bangun ruang]] seperti [[kerucut]] atau [[limas]], yang terletak di antara dua [[Bidang (matematika)|bidang]] [[sejajar]] yang memotongnya. Dalam kasus limas, [[Muka (geometri)|muka]] [[Alas (geometri)|alas]] berupa [[poligon]], dan muka [[Sisi (geometri)|sisi]] berupa [[trapesium]]. '''Frustum siku-siku''' adalah [[limas siku-siku]] atau kerucut siku-siku [[Pemenggalan (geometri)|terpenggal]], yang tegak lurus dengan garis sumbunya.<ref>William F. Kern, James R. Bland, ''Solid Mensuration with proofs'', 1938, hlm. 67.</ref> Bangun terpenggal tersebut yang tidak tegak lurus dengan garis sumbunya disebut '''frustum bukan siku-siku'''.
== Rumus
===
Rumus [[volume]] frustum persegi berbentuk limas diperkenalkan oleh [[matematika Mesir kuno]], yang dikenal sebagai [[Papirus Matematika Moskwa|Moskow Matematika Papirus]], yang ditulis pada [[Dinasti ke-13 Mesir|dinasti ke-13]] (sekitar 1850 SM):<math display="block">V = \frac{h}{3} (a^2 + a b +b^2).</math>dengan <math>a</math> dan <math>b</math> masing-masing menyatakan panjang [[Alas (geometri)|alas]] dan panjang sisi di atas, serta <math>h</math> menyatakan tinggi. Orang Mesir mengetahui rumus yang tepat untuk volume limas persegi penggal, tetapi belum ada bukti dari persamaan tersebut dalam papirus Moskow.
[[Berkas:Frustum_with_symbols.svg|al=Pyramidal frustum|jmpl|224x224px|Frustum limas]]
[[Volume]] frustum [[kerucut]] atau [[limas]] merupakan volume bangun ruang sebelum mengiris bagian puncaknya, yang kemudian dikurangi volume bagian puncak:<math display="block">V = \frac{h_1 B_1 - h_2 B_2}{3},</math>dengan <math>B_1</math> menyatakan luas alas, dan <math>B_2</math> menyatakan luas sisi di bagian atas frustum; serta <math>h_1</math> menyatakan garis tinggi yang tegak lurus dari titik puncak ke alas, dan <math>h_2</math> menyatakan garis tinggi yang tegak lurus dari titik puncak ke sisi di bagian atas frustum. Dengan memisalkan bahwa<math display="block">\frac{B_1}{h_1^2}=\frac{B_2}{h_2^2}=\frac{\sqrt{B_1 B_2}}{h_1 h_2} = \alpha,</math>maka rumus volume dapat dinyatakan sebagai sepertiga hasil kali kesebandingan <math>\alpha</math> dan selisih kubik dari <math>h_1</math> dan <math>h_2</math>, yang ditulis sebagai<math display="block">V = \frac{h_1 \alpha h_1^2 - h_2 \alpha h_2^2}{3} = \frac{\alpha}{3}(h_1^3 - h_2^3).</math>Dengan menggunakan identitas <math>a^3 - b^3 = (a - b) (a^2 + ab + b^2)</math>, maka diperoleh <math display="block">V = (h_1 - h_2)\alpha \frac{(h_1^2 + h_1 h_2 + h_2^2)}{3},</math>dengan <math>h = h_1 - h_2</math> menyatakan tinggi frustum. Kemudian, dengan mendistribusikan <math>\alpha</math> dan mensubstitusikan dari definisinya, [[rata-rata Heron]] dari luas <math>B_1</math> dan <math>B_2</math> akan memberikan rumus volume frustum lainnya, yaitu:<math display="block">V = \frac{h}{3}(B_1+\sqrt{B_1 B_2}+B_2).</math>
[[Heron dari Aleksandria]] adalah seorang matematikawan yang disematkan dengan penemuannya akan rumus volume frustum ini. Dengan menggunakan rumus tersebut, Heron menemukan [[satuan imajiner]], akar kuadrat dari negatif satu.<ref>Nahin, Paul. ''An Imaginary Tale: The story of {{sqrt|−1}}.'' Princeton University Press. 1998</ref>
Secara khusus, volume frustum kerucut melingkar dirumuskan sebagai<math display="block">V = \frac{\pi h}{3}(r_1^2+r_1 r_2+r_2^2),</math>dengan <math>\pi</math> adalah konstanta yang bernilai 3,14159265...; serta <math>r_1</math> menyatakan [[jari-jari]] alas, dan <math>r_2</math> menyatakan jari-jari sisi di bagian atas frustum. Volume frustum limas yang alasnya merupakan [[poligon]] (segi-<math>n</math>) beraturan dirumuskan sebagai<math display="block">V= \frac{nh}{12} (a_1^2+a_1a_2+a_2^2)\cot \frac{\pi}{n},</math>dengan <math>a_1</math> menyatakan panjang alas dan <math>a_2</math> menyatakan panjang sisi di bagian atas frustum.
=== Luas permukaan ===
[[Berkas:CroppedCone.svg|jmpl|Frustum kerucut]]Untuk frustum kerucut melingkar siku-siku, dipunyai<ref>{{cite journal|last1=Al-Sammarraie|first1=Ahmed T.|last2=Vafai|first2=Kambiz|date=2017|title=Heat transfer augmentation through convergence angles in a pipe|journal=Numerical Heat Transfer, Part A: Applications|volume=72|issue=3|page=197−214|doi=10.1080/10407782.2017.1372670|s2cid=125509773}}</ref><math display="block">\text{Luas permukaan samping} =\pi\left(r_1+r_2\right)s =\pi\left(r_1+r_2\right)\sqrt{\left(r_1-r_2\right)^2+h^2},</math>dan<math display="block">\text{Luas permukaan total} = \pi (r_1^2+r_2^2 + (r_1+r_2)s) = \pi \left(r_1^2+r_2^2 + (r_1+r_2) \sqrt{(r_1-r_2)^2+h^2}\right),</math>dengan <math>r_1</math> menyatakan [[jari-jari]] alas, dan <math>r_2</math> menyatakan jari-jari sisi di bagian atas frustum; serta <math>s</math> menyatakan garis tinggi miring frustum. Luas permukaan frustum siku-siku yang alasnya merupakan poligon (segi-<math>n</math>) beraturan dirumuskan sebagai<math display="block">L = \frac{n}{4} \left[(a_1^2+a_2^2) \cot \frac{\pi}{n} + \sqrt{(a_1^2-a_2^2)^2 \sec^2 \frac{\pi}{n}+4 h^2(a_1+a_2)^2} \right],</math>dengan <math>a_1</math> dan <math>a_2</math> menyatakan sisi di dua alas frustum.
== Lihat pula ==
* [[Frustum bola]]
== Referensi ==
{{reflist|30em}}
[[Kategori:Polihedron]]
[[Kategori:Polihedron prisamtoid]]
|