Etana: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika |
k Perbaikan untuk PW:CW (Fokus: Minor/komestika; 1, 48, 64) + genfixes |
||
(8 revisi perantara oleh 5 pengguna tidak ditampilkan) | |||
Baris 1:
{{Chembox
| Name = Etana
Baris 8 ⟶ 7:
| ImageFile2 = Ethane-3D-vdW.png
| ImageSize2 = 150px
| IUPACName = Etana<ref name=iupac2013>{{cite book | title =
| SystematicName = Dikarban (tidak disarankan<ref name=iupac2013 />)
| OtherNames = dimetil; etil hidrida; metilmetana
Baris 87 ⟶ 86:
== Sifat ==
Pada suhu dan tekanan standar, etana adalah gas tak berwarna dan tidak berbau. Ia memiliki titik didih {{convert|-88.5|°C|F K}} dan titik lebur {{convert|-182.8|°C|F K}}. Etana padat ada dalam beberapa modifikasi.<ref name="Nes">{{cite journal |doi= 10.1107/S0567740878007037 |title= Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determinations of two modifications of ethane |journal= Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry |volume=34 |issue=6 |page= 1947 |year= 1978 |last1= Van Nes |first1= G.J.H. |last2= Vos |first2= A. |url= http://www.rug.nl/research/portal/files/3440910/c3.pdf}}</ref> Pada pendinginan di bawah tekanan normal, modifikasi pertama yang muncul adalah [[kristal plastik]], yang membentuk sistem kristal kubik. Dalam bentuk ini, posisi atom hidrogen tidak tetap; molekul dapat berputar bebas di sekitar sumbu panjang. Mendinginkan etana ini di bawah kira-kira {{Convert|89.9|K|C F}} mengubahnya menjadi etana II yang berupa monoklinik dan bersifat metastabil.<ref>{{cite web |url= http://paarpraxis-rheinmain.de/W/kristallgitter/kristallgitter_e.php |title= Ethane as a solid |publisher= Paarpraxis-rheinmain.de |date= |accessdate= 2016-12-16 |archive-date= 2017-05-10 |archive-url= https://web.archive.org/web/20170510095115/http://paarpraxis-rheinmain.de/W/kristallgitter/kristallgitter_e.php |dead-url= yes }}</ref> Etana hanya sangat sedikit larut dalam air.
== Kimia ==
Baris 93 ⟶ 92:
: [[asetat|{{chem2|CH|3|COO|−}}]] → •{{chem2|CH|3}}+ [[karbon dioksida|{{chem2|CO|2}}]] + [[elektron|e<sup>−</sup>]]
: {{chem2|H|3|C}}• + •{{chem2|CH|3}} → {{chem2|C|2|H|6}}
Metode lain yang secara konseptual mirip adalah dengan oksidasi [[anhidrida asetat]] menggunakan [[peroksida]].
Baris 137 ⟶ 136:
=== Barier etana ===
[[
Memutar substruktur molekuler di sekitar ikatan yang mudah pecah umumnya membutuhkan energi. Energi minimum untuk menghasilkan rotasi ikatan 360 derajat disebut [[Stereokimia alkana|penghalang rotasi]] ({{lang-en|rotational barrier}}).
Etana memberikan contoh klasik dan sederhana tentang penghalang rotasi semacam itu, yang terkadang disebut "penghalang etana". Di antara bukti eksperimental awal penghalang ini (lihat diagram di sebelah kiri) diperoleh dengan memodelkan entropi etana.<ref>{{cite journal |doi= 10.1021/ja01281a014 |title= The Entropy of Ethane and the Third Law of Thermodynamics. Hindered Rotation of Methyl Groups |journal= Journal of the American Chemical Society |volume=59 |issue=2 |pages=276 |year=1937 |last1=Kemp |first1=J. D. |last2=Pitzer |first2= Kenneth S.}}
</ref> Tiga hidrogen di setiap ujung bebas untuk berputar di sekitar ikatan pusat karbon-karbon bila diberi energi yang cukup untuk mengatasi penghalang. Asal usul fisik penghalang masih belum sepenuhnya terpecahkan,<ref>{{cite journal |doi= 10.1021/ed082p1703 |title= Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics |year=2005 |last= Ercolani |first1=G. |journal= J. Chem. Educ. |volume=82 |issue=11 |pages= 1703–1708 |bibcode = 2005JChEd..82.1703E }}</ref> meskipun tolakan tumpang tindih (pertukaran)<ref>{{cite journal |doi= 10.1021/ar00090a004 |title= The Barrier to Internal Rotation in Ethane |year=1983 |last= Pitzer |first1= R.M. |journal= Acc. Chem. Res. |volume=16 |issue=6 |pages= 207–210}}</ref> antar atom hidrogen pada ujung molekul yang berlawanan mungkin adalah kandidat terkuat untuk fenomena tersebut, dengan memberikan efek [[hiperkonjugasi]] yang menstabilkan pada konformasi steger.<ref>{{cite journal|doi=10.1002/anie.200352931|title=The Magnitude of Hyperconjugation in Ethane: A Perspective from Ab Initio Valence Bond Theory|year=2004|last1=Mo|first1=Y.|last2=Wu|first2=W.|last3=Song|first3=L.|last4=Lin|first4=M.|last5=Zhang|first5=Q.|last6=Gao|first6=J.|journal=Angew. Chem. Int. Ed.|volume=43|issue=15|pages=1986–1990}}</ref> Namun, metode teoretis yang menggunakan titik awal yang tepat (orbital ortogonal) menemukan bahwa hiperkonjugasi adalah faktor yang terpenting terkait asal penghalang rotasi etana.<ref>{{cite journal |author= Pophristic, V.; Goodman, L. |title= Hyperconjugation not steric repulsion leads to the staggered structure of ethane |journal= Nature |volume= 411 |issue= 6837 |pages= 565–8 |doi= 10.1038/35079036 |pmid= 11385566 |year=2001}}</ref><ref>{{cite journal |author= Schreiner, P. R. |title= Teaching the right reasons: Lessons from the mistaken origin of the rotational barrier in ethane |journal= Angewandte Chemie International Edition |volume=41 |issue=19 |pages=3579–81, 3513 |pmid= 12370897 |year= 2002 |doi= 10.1002/1521-3773(20021004)41:19<3579::AID-ANIE3579>3.0.CO;2-S}}</ref>
Selama tahun 1890-1891, kimiawan memperkirakan bahwa molekul etana lebih menyukai konformasi steger dengan dua ujung molekul saling miring satu sama lain.<ref>{{cite journal |author= Bischoff, CA |title= Ueber die Aufhebung der freien Drehbarkeit von einfach verbundenen Kohlenstoffatomen |year=1890 |journal= Chem. Ber. |volume=23 |page= 623 |doi= 10.1002/cber.18900230197}}</ref><ref>{{cite journal |author= Bischoff, CA |title= Theoretische Ergebnisse der Studien in der Bernsteinsäuregruppe |year= 1891 |journal= Chem. Ber. |volume=24 |pages= 1074 |doi= 10.1002/cber.189102401195}}</ref><ref>{{cite journal |author= Bischoff, CA |title= Die dynamische Hypothese in ihrer Anwendung auf die Bernsteinsäuregruppe |year= 1891 |journal= Chem. Ber. |volume=24 |pages=1085 |doi= 10.1002/cber.189102401196 }}</ref><ref>{{cite journal |year=1893 |volume=26 |issue=2 |page= 1452 |doi= 10.1002/cber.18930260254 |title= Die Anwendung der dynamischen Hypothese auf Ketonsäurederivate |journal= Berichte der deutschen chemischen Gesellschaft |last1= Bischoff |first1=C.A. |last2= Walden |first2= P.}}</ref>
Baris 157 ⟶ 154:
== Kegunaan ==
Kegunaan utama etana adalah sebagai bahan baku untuk produksi [[Etena|etena (etilena)]] (C<sub>2</sub>H<sub>4</sub>) melalui [[perengkahan kukus]] (''[[
Secara eksperimental, etana sedang diteliti sebagai bahan baku untuk bahan kimia komoditas lainnya. Klorinasi [[Redoks|oksidatif]] etana telah lama muncul menjadi cara pembuatan [[vinil klorida]] yang lebih ekonomis daripada klorinasi etena. Banyak proses untuk menghasilkan reaksi ini yang telah [[Paten|dipatenkan]], tapi selektivitasnya terhadap [[vinil klorida]] yang rendah dan kondisi reaksi yang [[korosi]]f (khususnya, reaksi yang menggunakan campuran yang mengandung [[asam klorida]] pada suhu lebih dari 500 °C) telah memperkecil potensi komersialisasi sebagian besar reaksi tersebut. Saat ini, [[INEOS]] mengoperasikan pilot plant yang mengkonversi 1000 ton tahun etana menjadi vinil klorida di [[Wilhelmshaven]], [[Jerman]].
Baris 169 ⟶ 167:
Etana adalah gas yang mudah terbakar pada suhu kamar. Ia akan membentuk campuran [[Ledakan|eksplosif]] bila dicampur dengan udara sebesar 3,0% -12,5% volume.
Perlu beberapa tindakan pencegahan tambahan jika etana disimpan sebagai cairan kriogenik. Kontak langsung dengan etana cair dapat menyebabkan radang dingin parah (''[[
Etana dapat mengusir [[oksigen]] dan menyebabkan bahaya [[asfiksia]]. Etetana tidak menimbulkan risiko [[toksikologi]] akut maupun kronik. Etetana bukan [[karsinogen]].<ref>{{Cite book | title = Environmental Biotechnology: A Biosystems Approach | url = https://archive.org/details/environmentalbio0000vall | author = Vallero, Daniel |doi=10.1016/B978-0-12-375089-1.10014-5|chapter=Cancer Slope Factors| publisher = Academic Press | date = June 7, 2010 | page = [https://archive.org/details/environmentalbio0000vall/page/641 641]}}</ref>
== Etana atmosfer dan ekstrateresterial ==
Baris 177 ⟶ 175:
[[Berkas:Titan North Pole Lakes PIA08630.jpg|ka|jmpl|250px|Foto lintang bagian utara [[Titan (bulan)|Titan]]. Fitur gelapnya tampak seperti danau hidrokarbon, tapi perlu gambar lebih lanjut untuk melihat apakah titik gelap tetap sama]]
Etana muncul sebagai jejak gas di [[atmosfer bumi]], saat ini konsentrasi di [[permukaan laut]] adalah 0,5 [[Bagian per milyar|ppb]],<ref>[http://www.atmosphere.mpg.de/enid/3tg.html Trace gases] {{Webarchive|url=https://web.archive.org/web/20081222061502/http://www.atmosphere.mpg.de/enid/3tg.html |date=2008-12-22 }}. Atmosphere.mpg.de. Retrieved on 2011-12-08.</ref> meskipun konsentrasi di era pra-industri cenderung lebih rendah karena proporsi etana yang signifikan di atmosfer hari ini mungkin berasal dari [[bahan bakar fosil]]. Jumlah etana global bervariasi dari waktu ke waktu, kemungkinan karena pembakaran di [[ladang gas alam]].<ref name="SimpsonSulbaek Andersen2012">{{cite journal|last1=Simpson|first1=Isobel J.|last2=Sulbaek Andersen|first2=Mads P.|last3=Meinardi|first3=Simone|last4=Bruhwiler|first4=Lori|last5=Blake|first5=Nicola J.|last6=Helmig|first6=Detlev|last7=Rowland|first7=F. Sherwood|last8=Blake|first8=Donald R.|title=Long-term decline of global atmospheric ethane concentrations and implications for methane|journal=Nature|volume=488|issue=7412|year=2012|pages=490–494|doi=10.1038/nature11342|pmid=22914166}}</ref> Tingkat emisi etana global menurun dari tahun 1984 sampai 2010,<ref name="SimpsonSulbaek Andersen2012"/> meskipun produksi ''shale gas'' meningkat di [[Bakken Formation]], A.S. telah menahan penurunan hingga setengahnya.<ref name="KortSmith2016">{{cite journal|last1=Kort|first1=E. A.|last2=Smith|first2=M. L.|last3=Murray|first3=L. T.|last4=Gvakharia|first4=A.|last5=Brandt|first5=A. R.|last6=Peischl|first6=J.|last7=Ryerson|first7=T. B.|last8=Sweeney|first8=C.|last9=Travis|first9=K.|title=Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift|journal=Geophysical Research Letters|year=2016|doi=10.1002/2016GL068703|volume=43|pages=4617–4623}}</ref><ref>{{cite web|url=http://ns.umich.edu/new/multimedia/videos/23735-one-oil-field-a-key-culprit-in-global-ethane-gas-increase|title=One oil field a key culprit in global ethane gas increase|date=April 26, 2016|publisher=University of Michigan}}</ref>
Meskipun etana adalah [[gas rumah kaca]], namun jauh lebih sedikit daripada metana dan juga kurang efisien dibandingkan dari sisi massa. Etana terdeteksi sebagai komponen renik di atmosfer empat [[planet raksasa]], dan di atmosfer bulan [[Saturnus]], [[Titan (bulan)|Titan]].<ref>{{cite web|first = Bob|last = Brown|
Etana hadir di atmosfer ini hasil dari aksi [[fotokimia]] matahari terhadap gas metana: foton [[ultraviolet]] dengan [[panjang gelombang]] yang lebih pendek dari 160 [[Nanometer|nm]] dapat memecah molekul metana menjadi radikal [[metil]] dan atom [[hidrogen]] melalui proses foto-disosiasi. Bila dua radikal metil bergabung kembali, hasilnya adalah etana:
Baris 186 ⟶ 184:
: {{chem2|CH|3}}• + •{{chem2|CH|3}} → {{chem2|C|2|H|6}}
Pernah muncul hipotesis secara luas bahwa etana diproduksi dengan cara berikut di Titan: hujan turun ke permukaan bulan, dan dari waktu ke waktu telah terakumulasi menjadi lautan hidrokarbon yang banyak meliputi permukaan bulan. Observasi teleskopik inframerah memunculkan keraguan yang signifikan atas hipotesis ini, dan penyelidikan [[wahana Huygens]], yang mendarat di Titan pada tahun 2005, gagal mengamati cairan permukaan apapun, meskipun foto itu merupakan foto saluran drainase kering saat ini. Pada bulan Desember 2007 [[wahana Cassini]] menemukan setidaknya satu danau di kutub selatan Titan, sekarang disebut Ontario Lacus, karena luasnya yang mirip dengan [[Danau Ontario]] di Bumi (sekitar 20.000
Pada tahun 1996, etana terdeteksi pada [[Komet Hyakutake]],<ref name= Mumma/> dan sejak saat itu telah terdeteksi di beberapa [[komet]] lainnya. Keberadaan etana di badan-badan tata surya yang jauh dapat menjadi petunjuk etana sebagai komponen primordial dari [[nebula surya]], asal matahari dan planet-planet diyakini terbentuk.
Pada tahun 2006, Dale Cruikshank dari Pusat Penelitian NASA/Ames (penyusun [[
| author = Stern, A.
| authorlink = Alan Stern
| date = November 1, 2006
Baris 199 ⟶ 197:
| publisher = Johns Hopkins University Applied Physics Laboratory
| accessdate = 2007-02-12
| archive-date = 2011-08-20
| archive-url = https://www.webcitation.org/615UTf8kE?url=http://pluto.jhuapl.edu/overview/piPerspectives/piPerspective_11_1_2006.php
| dead-url = yes
}}</ref>
Baris 217 ⟶ 218:
*{{en}} [http://www.inchem.org/documents/icsc/icsc/eics0266.htm International Chemical Safety Card 0266]
*{{en}} [http://www.aet.com/gtip1.htm Market-Driven Evolution of Gas Processing Technologies for NGLs]
*{{en}} [http://wiki.jmol.org:81/index.php/User:Bduke Staggered and eclipsed ethane] {{Webarchive|url=https://web.archive.org/web/20090204201325/http://wiki.jmol.org:81/index.php/User:Bduke |date=2009-02-04 }}
{{alkana}}
{{Authority control}}
[[Kategori:Alkana]]
|