Pirimidina: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
(14 revisi perantara oleh 8 pengguna tidak ditampilkan)
Baris 51:
}}
 
'''Pirimidina''' ({{lang-en|Pyrimidine}}) adalah suatu [[senyawa organik]] [[heterosiklik]] [[aromatik]] yang mirip dengan [[piridina]].<ref name="isbn0-582-27843-0">{{cite book |author=Gilchrist, Thomas Lonsdale; Gilchrist, T. L. |authorlink= |editor= |others= |title=Heterocyclic chemistry |edition= |language= |publisher=Longman |location=New York |year=1997 |origyear= |pages= |quote= |isbn=0-582-27843-0 |oclc= |doi= |url= |accessdate=}}</ref> Satu dari tiga [[diazina]] (senyawa heterosiklik enam [[karbon]] dengan dua [[nitrogen]] pada cincin), mempunyai [[nitrogen]] pada posisi 1 dan 3 dalam cincin.<ref name="JouleMills5thp250">{{cite book | title=Heterocyclic Chemistry |edition=5th |editor1-last=Joule |editor1-first=John A. |editor2-last=Mills |editor2-first=Keith |publisher=Wiley |location=Oxford |year=2010 |page=250 |quote= |isbn=978-1-405-13300-5 |oclc= |doi= |url= |accessdate=}}</ref> Kedua diazina lain adalah [[pirazina]] (nitrogen pada posisi 1 dan 4) dan [[piridazina]] ( pada posisi 1 dan 2). Dalam [[asam nukleat]], ketiga tipe [[basa nukleotida]] merupakan derivat [[pirimidin]] yaitu: [[sitosina|sitosina (= cytosine)]] (C), [[timina]] (T), dan [[urasil]] (U).
 
== Keberadaan dan sejarah ==
[[FileBerkas:PinnerPyrimidin.png|thumbjmpl|leftkiri|77px|Struktur pirimidina menurut Pinner (1885).]]
Sistem cincin pirimidina banyak dijumpai dalam alam<ref name=Lagoja1>{{Cite journal
| author = Lagoja, Irene M.
Baris 67:
| doi = 10.1002/cbdv.200490173
| pmid = 17191918
| access-date = 2014-12-13
| archive-date = 2017-02-15
| archive-url = https://web.archive.org/web/20170215012342/http://homepage.univie.ac.at/mario.barbatti/papers/pyrazine_pyrimidine/pyrimidine.pdf
| dead-url = yes
}}</ref>
sebagai senyawa berfusi substitusi dan cincin serta derivatifnya, termasuk [[#Nukleotida|nukleotida]], [[tiamina]] (vitamin B1) dan [[alloxan]]. Juga didapati dalam banyak senyawa sintetik seperti [[barbiturat]] dan obat [[HIV]], [[zidovudine]]. Meskipun derivatif pirimidina seperti [[asam urat]] dan alloxan telah dikenal sejak awal abad ke-19, sintesis pirimidina dalam laboratorium baru dilakukan pada tahun 1879,<ref name=Lagoja1/> ketika Grimaux melaporkan pembuatan [[asam barbiturat]] dari [[urea]] Ivy dan [[asam malonat]] dengan katalis [[fosfor oxiklorida]].<ref name=Grimaux1879>{{Cite journal
| title = Pyrimidine as Constituent of Natural Biologically Active Compounds
}}</ref> ketika Grimaux melaporkan pembuatan [[asam barbiturat]] dari [[urea]] Ivy dan [[asam malonat]] dengan katalis [[fosfor oxiklorida]].<ref name=Grimaux1879>{{Cite journal
| author = Grimaux, E.
| year = 1879
Baris 80 ⟶ 82:
| url = http://visualiseur.bnf.fr/ark:/12148/bpt6k30457/f85.image
}}</ref>
Studi sistematik pirimidina dimulai<ref name="ElderfieldVol6">{{cite book |author= Kenner, G.W.; Todd, Sir Alexander |editor = Elderfield, R.C. |title=Heterocyclic Compounds, Volume 6 |publisher=Wiley |location=New York |year=1957 |pages=235 |oclc= |doi= |url= |accessdate=}}</ref> pada tahun 1884 oleh [[Adolf Pinner|Pinner]],<ref name=Pinner1884>{{Cite journal
| author = [[Adolf Pinner|Pinner, A.]]
| year = 1884
Baris 123 ⟶ 125:
melalui konversi [[asam barbiturat]] menjadi 2,4,6-trikloropirimidina diikuti oleh reduksi menggunakan debu [[seng]] dalam air panas.
 
== Nomenklatur ==
Nomenklatur pirimidina tergolong sederhana. Namun, sebagaimana heterosiklik lainnya, gugus hidroksil tautomerik menghasilkan komplikasi karena mereka adanya terutama dalam bentuk amida siklik. Misalnya, 2-hidroksipirimidina lebih tepat dinamai [struktur] 2-pirimidon. Tersedia daftar sebagian nama-nama trivial dari berbagai pirimidina.<ref name="BrownPyrimidines1994p5">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=5–6[https://archive.org/details/pyrimidines0000unse/page/5 5]–6|isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
 
== Sifat fisika ==
Sifat-sifat fisika dapat dilihat pada kotak info. Diskusi lebih mendalam, termasuk spektrum, dapat dilihat dalam Brown ''et al.''<ref name="BrownPyrimidines1994p242">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=242–244[https://archive.org/details/pyrimidines0000unse/page/242 242]–244|isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
 
== Sifat kimia ==
Menurut klasifikasi Albert<ref name="Albert1968p56">{{cite book |author=Albert, Adrien |title=Heterocyclic Chemistry, an Introduction |publisher=Athlone Press |location=London |year=1968 |pages=56–62[https://archive.org/details/heterocyclicchem0000albe/page/56 56]–62|isbn= |url= https://archive.org/details/heterocyclicchem0000albe|accessdate=}}</ref> heterosiklik enam karbon dapat dikatakan "π-deficient" ("kekurangan π"). Substitusi oleh gugus elektronegatif atau atom nitrogen tambahan dalam cincin secara signifikan meningkatkan "kekurangan π" itu. Efek ini juga menurunkan kadar basa.<ref name="Albert1968p437">{{cite book |author=Albert, Adrien |title=Heterocyclic Chemistry, an Introduction |publisher=Athlone Press |location=London |year=1968 |pages=437–439[https://archive.org/details/heterocyclicchem0000albe/page/437 437]–439|isbn= |url= https://archive.org/details/heterocyclicchem0000albe|accessdate=}}</ref>
 
Sebagaimana piridina, dalam pirimidina densitas elektron π menurun sampai taraf lebih besar. Karenanya, [[substitusi aromatik elektrofilik]] lebih sulit sementara [[substitusi aromatik nukleofilik]] terbantu. Contoh jenis reaksi terakhir adalah penghilangan gugus [[amino]] dalam 2-aminopirimidina oleh [[klor]].<ref>[[Organic Syntheses]], Coll. Vol. 4, p.182 (1963); Vol. 35, p.34 (1955) [http://www.orgsynth.org/orgsyn/pdfs/CV4P0182.pdf Link]</ref> dan reaksi sebaliknya.<ref>[[Organic Syntheses]], Coll. Vol. 4, p.336 (1963); Vol. 35, p.58 (1955) [http://www.orgsynth.org/orgsyn/pdfs/CV4P0336.pdf Link]</ref>
 
Ketersediaan pasangan elektron tunggal ([[kadar basa]]) menurun dibandingkan [[piridina]]. Dibandingkan piridina, [[N-alkilasi]] dan [[N-oksidasi]] lebih sulita. Nilai [[pKa]] untuk pirimidina terprotonasi adalah 1,23 dibandingkan 5,30 untuk piridina. Protonasi dan tambahan elektrofilik lain akan terjadi pada hanya satu [[nitrogen]] karena deaktivasi lebih lanjut oleh nitrogen kedua.<ref name="JouleMills5thp250">{{cite book |author=Joule, J. A.; Mills, K. |publisher=Wiley |location=Oxford |year=2010 |pages=250 |isbn=978-1-405-133300-5 }}</ref> Posisi 2-, 4-, dan 6- pada cincin pirimidina merupakan analog kekurangan elektron dari senyawa pyridina dan nitro- serta dinitrobenzena. Posisi 5 lebih rendah tingkat kekurangan elektronnya dan substituen di sana sangat stabil. Namun, substitusi eletrofilik relatif lancar pada posisi 5, termasuk [[nitrasi]] dan halogenasi.<ref name="BrownPyrimidines1994p4">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=4–8[https://archive.org/details/pyrimidines0000unse/page/4 4]–8|isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
 
Reduksi dalam [[stabilisasi resonansi]] pirimidina dapat lebih menghasilkan reaksi adisi dan pemutusan cincin daripada substitusi. Salah satu manifestasinya dapat diamati pada "[[Dimroth rearrangement]]".
Baris 141 ⟶ 143:
 
== Sintesis ==
Sebagaimana seringkalisering kali dijumpai pada sistem heterosiklik induk, sintesis pirimidina tidak begitu lazim dan biasanya dilakukan dengan menghilangan gugus fungsi dari derivatif. Sintesis primer dalam jumlah besar melibatkan [[formamida]] telah dilaporkan.<ref name="BrownPyrimidines1994p241">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=241–2[https://archive.org/details/pyrimidines0000unse/page/241 241]–2|isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
 
Sebagai suatu kelas, pirimidina biasanya disintesis melalui “Principal Synthesis” melibatkan siklisasi senyawa beta-dikarbonil dengan senyawa N-C-N. Reaksi sebelumnya dengan amidina menghasilkan substitusi pirimidina pada posisi 2, biasanya dengan urea menghasilkan 2-pirimidion, dan dengan guanidina menghasilkan 2-aminopirimidina.<ref name="BrownPyrimidines1994p149">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=149–239[https://archive.org/details/pyrimidines0000unse/page/149 149]–239|isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
<!--
Pirimidina dapat dibuat melaui [[Biginelli reaction]]. Banyak metoda lain bergantung pada [[kondensasi]] [[karbonil]] dengan diamina, misalnya sintesis 2-thio-6-metilurasil dari [[thiourea]] dan [[etil asetoasetat]]<ref>[[Organic Syntheses]], Coll. Vol. 4, p.638 (1963); Vol. 35, p.80 (1955) [http://www.orgsynth.org/orgsyn/pdfs/CV4P0638.pdf Link]</ref> atau sintessi 4-metilpirimidina dengan 4,4-dimetoksi-2-butanon dan [[formamida]].<ref>[[Organic Syntheses]], Coll. Vol. 5, p.794 (1973); Vol. 43, p.77 (1963) [http://www.orgsynth.org/orgsyn/pdfs/CV5P0794.pdf Link]</ref>
Baris 149 ⟶ 151:
A novel method is by reaction of certain [[amide]]s with [[carbonitrile]]s under electrophilic activation of the amide with 2-chloro-pyridine and [[trifluoromethanesulfonic anhydride]]:<ref>''Single-Step Synthesis of Pyrimidine Derivatives'' Mohammad Movassaghi and Matthew D. Hill [[J. Am. Chem. Soc.]]; '''2006'''; 128(44) pp 14254–14255; (Communication) {{DOI|10.1021/ja066405m}}</ref>
-->
:[[ImageBerkas:PyrimidineSynthAmideCarbonitrile.png|400px|Sintesis pirimidina, Movassaghi (2006)]]
 
== Reaksi ==
Karena menurunnya kadar basa dibandingkan piridina, substitusi elektrofilik pirimidina kurang lancar. [[Protonasi]] atau [[alkilasi]] biasanya berlangsung pada hanya satu atom nitrogen dalam cincin. [[Oksidasi-N]] mono terjadi melalui reaksi dengan perasida.<ref name="JouleMills5thp253">{{cite book | title=Heterocyclic Chemistry |edition=5th |editor1-last=Joule |editor1-first=John A. |editor2-last=Mills |editor2-first=Keith |publisher=Wiley |location=Oxford |year=2010 |pages=253–4 |quote= |isbn=978-1-405-13300-5 |oclc= |doi= |url= |accessdate=}}</ref>
<!--
Substitusi-C eletrofilik pirimidina terjadi pada posisi 5, yang paling rendah tingkat kekurangan elektronnya. Nitration, [[nitrosation]], [[azo coupling]], halogenation, [[sulfonation]], formylation, hydroxymethylation, and aminomethylation have been observed with substituted pyrimidines.<ref name="BrownPyrimidines1994p9">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=9–13[https://archive.org/details/pyrimidines0000unse/page/9 9]–13 |isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
 
Nucleophilic C-substitution should be facilitated at the 2-, 4-, and 6-positions but there are only a few examples. Amination and hydroxylation has been observed for substituted pyrimidines. Reactions with Grignard or alkyllithium reagents yield 4-alkyl- or 4-aryl pyrimidine after aromatization.<ref name="BrownPyrimidines1994p14">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=14–15[https://archive.org/details/pyrimidines0000unse/page/14 14]–15 |isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
 
Free radical attack has been observed for pyrimidine and photochemical reactions have been observed for substituted pyrimidines.<ref name="BrownPyrimidines1994p15">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |pages=15–16 }}</ref> Pyrimidine can be hydrogenated to give tetrahydropyrimidine.<ref name="BrownPyrimidines1994p17">{{cite book |author=Brown, D. J.; Evans, R.F.; Cowden, W. B.; Fenn, M. D. |title=The Pyrimidines |publisher=John Wiley & Sons |location=New York |year=1994 |pages=[https://archive.org/details/pyrimidines0000unse/page/17 17] |isbn=0-471-50656-7|url= https://archive.org/details/pyrimidines0000unse|accessdate=}}</ref>
-->
== Nukleotida ==
[[FileBerkas:Blausen 0324 DNA Pyrimidines.png|thumbjmpl|250px|Basa nitrogen pirimidina nitrogen dijumpai dalam [[DNA]] dan [[RNA]].]]
Tiga [[nucleobase]] yang ditemukan dalam [[asam nukleat]], yaitu [[sitosina|sitosina/cytosine]] (C), [[timina]] (T), dan
[[urasil]] (U), merupakan derivatif pirimidina:
Baris 167 ⟶ 169:
{|
|-
| [[ImageBerkas:Cytosine chemical structure.png|leftkiri|101px|Struktur kimia sitosina]] || [[ImageBerkas:Thymine chemical structure.png|leftkiri|127px|Struktur kimia timina]] || [[ImageBerkas:Uracil chemical structure.png|leftkiri|102px|Struktur kimia urasil]]
|-
| <center>Sitosina/Cytosine ('''C''')</center> || <center>Timina ('''T''')</center> || <center>Urasil ('''U''')</center>
|}
 
Dalam [[DNA]] dan [[RNA]], basa-basa ini membentuk [[ikatan hidrogen]] dengan [[purina]] [[:en:complementarity (molecular biology)|komplementer]]. Jadi, dalam DNA, senyawa [[purina]] [[adenina]] (A) dan [[guanina]] (G) masing-masing berpasangan dengan senyawa pirimidina timina (T) dan sitosina (C), membentuk pasangan-pasangan A:T dan G:C.
 
Dalam [[RNA]], komplemen [[adenina]] (A) adalah [[urasil]] (U) bukannya [[timina]] (T), sehingga pasangan yang dibentuk adalah [[adenina]]:[[urasil]] (A:U) dan [[guanina]]:[[sitosina]] (G:C).
Baris 191 ⟶ 193:
{{Reflist|2}}
 
{{Nukleobasa, nukleosida, dan nukleotida}}
{{Nucleobases, nucleosides, and nucleotides}}
 
[[CategoryKategori:Pirimidina| ]]
[[Category:Biomolecules]]
[[Kategori:DiazinaBasa aromatik]]
[[Category:Pirimidina| ]]
[[CategoryKategori:BasaCincin aromatik sederhana]]
[[Kategori:Diazina]]