Korelasi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.2
 
(9 revisi perantara oleh 7 pengguna tidak ditampilkan)
Baris 1:
Dalam [[teori probabilitas]] dan [[statistika]], '''korelasi''', juga disebut '''koefisien korelasi''', adalah nilai yang menunjukkan kekuatan dan arah hubungan linier antara dua [[peubah acak]] (''random variable'').
 
{|class="wikitable" style="text-align: center;"
Baris 15:
 
=== Sifat-sifat matematis ===
[[Berkas:Korelasi.png|thumbjmpl|350px|Korelasi linier antara 1000 pasang pengamatan. Data digambarkan pada bagian kiri bawah dan koefisien korelasinya ditunjukkan pada bagian kanan atas. Setiap titik pengamatan berkorelasi maksimum dengan dirinya sendiri, sebagaimana ditunjukkan pada diagonal (seluruh korelasi = +1).]]
Korelasi ρ<sub>''X, Y''</sub> antara dua [[peubah acak]] ''X'' dan ''Y'' dengan nilai yang diharapkan μ<sub>''X''</sub> dan μ<sub>''Y''</sub> dan [[simpangan baku]] σ<sub>''X''</sub> dan σ<sub>''Y''</sub> didefinisikan sebagai:
 
Baris 21:
\rho_{X,Y}={\mathrm{cov}(X,Y) \over \sigma_X \sigma_Y} ={E((X-\mu_X)(Y-\mu_Y)) \over \sigma_X\sigma_Y}.</math>
 
Karena μ<sub>''X''</sub> = E(''X''),
σ<sub>''X''</sub><sup>2</sup> = E(''X''<sup>2</sup>)&nbsp;−&nbsp;E<sup>2</sup>(''X'') dan
demikian pula untuk ''Y'', maka dapat pula ditulis
 
Baris 33:
 
== Koefisien korelasi non-parametrik ==
Koefisien korelasi Pearson merupakan [[Statistika parametrik|statistik parametrik]], dan ia kurang begitu menggambarkan korelasi bila asumsi dasar [[Distribusi normal|normalitas]] suatu data dilanggar. Metode korelasi [[Statistika non-parametrik|non-parametrik]] seperti [[Koefisien korelasi rank Spearman|ρ Spearman]] and [[Tau Kendall|τ Kendall]] berguna ketika distribusi tidak normal. Koefisien korelasi non-parametrik masih kurang ''kuat'' bila dibandingkan dengan metode parametrik jika asumsi normalitas data terpenuhi, namuntetapi cenderung memberikan hasil distrosi ketika asumsi tersebut tak terpenuhi.
 
== Metode pengukuran yang lain untuk mengetahui dependensi antara dua peubah acak ==
Baris 58:
== Pranala luar ==
* [http://www.mega.nu:8080/ampp/rummel/uc.htm Understanding Correlation] - Materi pegantar
* [http://www.statsoft.com/textbook/stathome.html Statsoft Electronic Textbook] {{Webarchive|url=https://web.archive.org/web/20090227054024/http://www.statsoft.com/textbook/stathome.html |date=2009-02-27 }}
* [http://www.vias.org/tmdatanaleng/cc_corr_coeff.html Pearson's Correlation Coefficient]
* [http://www.vias.org/simulations/simusoft_rdistri.html Learning by Simulations] - Distribusi koefisien korelasi
* [http://www.analistat.com Jasa analisis statistik penelitian] {{Webarchive|url=https://web.archive.org/web/20070514090155/http://analistat.com/ |date=2007-05-14 }} - Jasa analisis statistik penelitian
== Rujukan ==
{{references}}
 
[[Kategori:Statistika]]