Persamaan fungsional Cauchy: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k v2.04b - Fixed using Wikipedia:ProyekWiki Cek Wikipedia (Spasi dalam kategori)
k clean up, added orphan tag
 
(Satu revisi perantara oleh satu pengguna lainnya tidak ditampilkan)
Baris 1:
{{Orphan|date=Januari 2023}}
 
'''Persamaan fungsional Cauchy''' adalah [[persamaan fungsional]] dari [[kebebasan linear]]:
:<math> f(x+y)=f(x)+f(y). \ </math>
 
Solusi untuk ini disebut [[peta aditif | fungsi aditif]]. Melalui [[bilangan rasional]], dapat ditunjukkan menggunakan [[aljabar dasar]] bahwa terdapat satu kelompok solusi, yaitu <math>f:x\mapsto cx</math> untuk setiap konstanta rasional <math> c </math>. Selama [[bilangan riil]], <math>f:x\mapsto cx</math>, sekarang dengan <math> c </math> konstanta nyata arbitrer, juga sekumpulan solusi; namun ada solusi lain yang sangat rumit. Namun, dari sejumlah kondisi keteraturan, beberapa di antaranya cukup lemah, akan menghalangi adanya solusi patologis ini. Misalnya, fungsi aditif <math>f:\mathbb{R}\to\mathbb{R}</math> linier jika:
* <math> f </math> adalah [[fungsi kontinu | kontinu]] (dibuktikan oleh [[Cauchy]] pada tahun 1821). Kondisi ini semakin melemah pada tahun 1875 oleh [[Darboux]] yang menunjukkan bahwa hanya perlu fungsi tersebut untuk berlanjut pada satu titik.
* <math> f </math> adalah [[fungsi monotonik | monotonik]] pada interval apa pun.
* <math>f</math> adalah [[fungsi terikat | dibatasi]] pada interval apa pun.
* <math> f </math> adalah [[Lebesgue terukur]].
Di sisi lain, jika tidak ada kondisi lebih lanjut yang diberlakukan <math>f</math>, kemudian (dengan asumsi [[aksioma pilihan]]) ada banyak fungsi lain yang memenuhi persamaan tersebut. Ini dibuktikan pada tahun 1905 oleh [[Georg Hamel]] menggunakan [[basis Hamel]]. Fungsi semacam itu terkadang disebut '' Fungsi Hamel''.<ref>Kuczma (2009), p.130</ref>
 
[[Masalah kelima Hilbert | Masalah kelima]] pada [[Masalah Hilbert | Daftar Hilbert]] adalah generalisasi dari persamaan ini. Fungsi di mana terdapat [[bilangan riil]] <math>c</math> such that <math> f(cx) \ne cf(x) \ </math> dikenal sebagai fungsi Cauchy-Hamel dan digunakan dalam invarian Dehn-Hadwiger yang digunakan dalam perluasan [[masalah ketiga Hilbert]] dari 3-D ke dimensi yang lebih tinggi.<ref>V.G. Boltianskii (1978) "Hilbert's third problem", Halsted Press, Washington</ref>
 
== Solusi atas bilangan rasional ==
Baris 59 ⟶ 61:
== Properti solusi linier atas bilangan real ==
 
Kami membuktikan di bawah bahwa solusi lain harus memiliki fungsi [[Patologis (matematika) | patologis]] yang tinggi. Khususnya,
kami menunjukkan bahwa solusi lain harus memiliki properti yang grafik <math>y = f(x)</math> adalah
[[himpunan padat | padat]] masuk <math>\mathbb{R}^2</math>, yaitu bahwa setiap disk pada bidang (namun
kecil) berisi titik dari grafik. Dari sini mudah untuk membuktikan berbagai kondisi
diberikan di paragraf pengantar.
Baris 99 ⟶ 101:
== Adanya solusi nonlinear atas bilangan riil ==
<!--
The linearity proof given above also applies to <math>f:\alpha \mathbb{Q}\to\mathbb{R}</math>, where <math>\alpha\mathbb{Q}</math> is a scaled copy of the rationals. This shows that the only linear solutions are permitted when the domain of <math>f</math> is restricted to such sets. Thus, in general, we have <math>f(\alpha q)=f(\alpha)q</math> for all <math>\alpha\in \mathbb{R},\ q\in\mathbb{Q}</math>. However, as we will demonstrate below, highly pathological solutions can be found for functions <math>f:\mathbb{R}\to\mathbb{R}</math> based on these linear solutions, by viewing the reals as a vector space over the field of rational numbers. Note, however, that this method is nonconstructive, relying as it does on the existence of a [[Basis (linear algebra)|(Hamel) basis]] for any vector space, a statement proved using [[Zorn's lemma]]. (In fact, the existence of a basis for every vector space is logically equivalent to the [[axiom of choice]].)
 
To show that solutions other than the ones defined by <math>f(x)=f(1)x</math> exist, we first note that because every vector space has a basis, there is a basis for <math> \mathbb{R}</math> over the field <math>\mathbb{Q}</math>, i.e. a set <math>\mathcal{B} \sub \mathbb{R}</math> with the property that any <math> x\in\mathbb{R}</math> can be expressed uniquely as <math display="inline"> x= \sum_{i\in I}{ \lambda_i x_i }</math>, where <math>\{ x_i \}_{i\in I}</math> is a finite subset of <math>\mathcal{B}</math> (i.e., <math>|I|<\aleph_0</math>), and each <math>\lambda_i\in\mathbb{Q}</math>. We note that because no explicit basis for <math> \mathbb{R}</math> over <math>\mathbb{Q}</math> can be written down, the pathological solutions defined below likewise cannot be expressed explicitly.
Baris 116 ⟶ 118:
 
* Solution to the Cauchy Equation [http://www.math.rutgers.edu/~useminar/cauchy.pdf Rutgers University]
* [http://cofault.com/2010/01/hunt-for-addictive-monster.html The Hunt for Addi(c)tive Monster] {{Webarchive|url=https://web.archive.org/web/20110929224338/http://www.cofault.com/2010/01/hunt-for-addictive-monster.html |date=2011-09-29 }}
*{{cite web | url=https://math.stackexchange.com/q/423492 | title=Overview of basic facts about Cauchy functional equation | website=StackExchange | date=2013| accessdate=20 December 2015 | author = Martin Sleziak |display-authors=etal}}