Bilangan alef: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
JohnThorne (bicara | kontrib) ←Membuat halaman berisi 'thumb|right|150px|Alef-nol (''aleph-null''), [[bilangan kardinal tak terhingga terkecil]] '''Bilangan alef''' ({{lang-en|aleph numbe...' |
k →Alef-nol: clean up |
||
(21 revisi perantara oleh 12 pengguna tidak ditampilkan) | |||
Baris 1:
{{Tanpa referensi|date=November 2021}}[[
'''Bilangan alef''' ({{lang-en|aleph number}}) dalam [[teori himpunan]] (suatu bidang [[matematika]]) adalah suatu urutan bilangan yang digunakan untuk melambangkan [[bilangan kardinal|kardinalitas]] (atau ukuran) dari himpunan tak terhingga (''infinite set''). Dinamakan menurut simbol yang dipakai, yaitu [[abjad Ibrani|huruf Ibrani]] "[[alef]]" (<math>\aleph</math>).{{efn|
Dalam buku matematika lama, huruf alef dicetak terbalik secara tidak sengaja–misalnya, dalam Sierpiński (1958)<ref name=Sierpiński-1958>{{cite book |last=Sierpiński |first= Wacław |year=1958 |title=Cardinal and Ordinal Numbers |title-link=Cardinal and Ordinal Numbers |series=Polska Akademia Nauk Monografie Matematyczne |volume= 34 |publisher=Państwowe Wydawnictwo Naukowe |place=Warsaw, PL |mr=0095787}}
</ref>{{rp|page=402}} huruf alef muncul dengan cara yang benar keatas dan terbalik–sebagian karena matriks [[monotipe]] untuk alef salah dibangun dengan posisi cara yang salah.<ref>
{{cite book
|last1=Swanson |first1=Ellen
|last2=O'Sean |first2=Arlene Ann
|last3=Schleyer |first3=Antoinette Tingley
|year=1999 |orig-year=1979
|edition=updated
|title=Mathematics into type: Copy editing and proofreading of mathematics for editorial assistants and authors
|url=https://archive.org/details/mathematicsintot00swan |publisher=[[American Mathematical Society]]
|place=Providence, RI
|isbn=0-8218-0053-1
|mr=0553111
|page=[https://archive.org/details/mathematicsintot00swan/page/n22 16]
}}
</ref>
}}
Kardinalitas [[bilangan asli]] adalah <math>\aleph_0</math> (dibaca "alef-nol" (''aleph-null''), atau
Konsep ini berasal dari [[Georg Cantor]],<ref>{{cite
|first=Jeff |last=Miller
<!--▼
|title=Earliest uses of symbols of set theory and logic
|website=jeff560.tripod.com
-->▼
|url=http://jeff560.tripod.com/set.html
==Alef-nol==▼
|access-date=2016-05-05
<math>\aleph_0</math> adalah kardinalitas dari semua [[bilangan asli]], dan merupakan suatu [[bilangan transfinit|kardinal tak terhingga]]. Himpunan semua [[bilangan ordinal]] finit, dinamakan '''ω''' atau '''ω<sub>0</sub>''', mempunyai kardinalitas <math>\aleph_0</math>. Suatu himpunan mempunyai kardinalitas <math>\aleph_0</math> [[jika dan hanya jika]] bilangan itu [[:en:countably infinite|terhitung sebagai tak terhingga]], yaitu, ada [[:en:bijection|bijeksi]] (kesesuaian satu lawan satu) di antaranya dan bilangan-bilangan asli. Contoh-contoh himpunan semacam itu adalah:▼
|postscript=;
}} who quotes
{{cite book
|author=Dauben, Joseph Warren
|date=1990
|title=Georg Cantor: His mathematics and philosophy of the infinite
|isbn=9780691024479
|url-access=registration
|url=https://archive.org/details/georgcantorhisma0000daub
|quote=Bilangan barunya layak mendapatkan sesuatu yang unik. ... Tidak ingin menciptakan simbol baru sendiri, ia memilih alef, huruf pertama dari alfabet Ibrani ... alef dapat dianggap mewakili awal yang baru ...
}}</ref> yang mendefinisikan pengertian kardinalitas dan menyadari bahwa himpunan tak terhingga dapat mempunyai kardinalitas yang berbeda.
Bilangan alef berbeda dari [[Tak hingga|tak-hingga]] (∞) yang biasa ditemukan dalam aljabar dan [[kalkulus]]. Bilangan alef mengukur ukuran himpunan secara tak-hingga, di sisi lain pada umumnya didefinisikan sebagai [[limit (matematika)|limit]] ekstrim dari [[garis bilangan real]] (diterapkan ke [[fungsi (matematika)|fungsi]] atau [[urutan (matematika)|urutan]] yang "[[deret divergen|divergen]] ke tak hingga" atau "menambah tanpa batas"), atau titik ekstrim dari [[garis bilangan real diperluas]].
* himpunan semua [[bilangan kuadrat]], himpunan semua [[bilangan kubik]], himpunan semua bilangan [[pangkat empat]], ...▼
* himpunan semua [[pangkat sempurna]], himpunan semua [[pangkat prima]], ▼
▲== Alef-nol ==
▲<math>\aleph_0</math> adalah kardinalitas dari semua [[bilangan asli]], dan merupakan suatu [[bilangan transfinit|"bilangan transfinit" atau "kardinal tak
▲* himpunan semua bilangan [[
* himpunan semua [[bilangan genap]], himpunan semua [[bilangan ganjil]],
* himpunan semua [[bilangan prima]], himpunan semua [[bilangan komposit]],
* himpunan semua [[bilangan bulat]],
* himpunan semua [[bilangan rasional]],
* himpunan semua [[
* himpunan semua [[
* himpunan semua [[
* himpunan semua [[
* himpunan semua [[
<!--▼
:{1, 3, 5, 7, 9, ..., 2, 4, 6, 8, 10, ...}
==
<math>\aleph_1</math>
'''ω<sub>1</sub>''' is actually a useful concept, if somewhat exotic-sounding. An example application is "closing" with respect to countable operations; e.g., trying to explicitly describe the [[sigma-algebra|σ-algebra]] generated by an arbitrary collection of subsets (see e. g. [[Borel hierarchy]]). This is harder than most explicit descriptions of "generation" in algebra ([[vector space]]s, [[group theory|group]]s, etc.) because in those cases we only have to close with respect to finite operations—sums, products, and the like. The process involves defining, for each countable ordinal, via [[transfinite induction]], a set by "throwing in" all possible countable unions and complements, and taking the union of all that over all of '''ω<sub>1</sub>'''.
▲-->
== Hipotesis kontinum ==
{{main|
{{see also|
:<math>2^{\aleph_0}=\aleph_1.</math>
▲<!--
CH is independent of ZFC: it can be neither proven nor disproven within the context of that axiom system (provided that ZFC is consistent). That it is consistent with ZFC was demonstrated by [[Kurt Gödel]] in 1940 when he showed that its negation is not a theorem of ZFC. That it is independent of ZFC was demonstrated by [[Paul Cohen (mathematician)|Paul Cohen]] in 1963 when he showed, conversely, that the CH itself is not a theorem of ZFC by the (then novel) method of [[Forcing (mathematics)|forcing]].
-->
==
:<math>\left\{\,\aleph_n
di antara bilangan-bilangan alef.
▲<!--
Aleph-ω is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory ''not'' to be equal to the cardinality of the set of all [[real number]]s; for any positive integer n we can consistently assume that <math>2^{\aleph_0} = \aleph_n</math>, and moreover it is possible to assume <math>2^{\aleph_0}</math> is as large as we like. We are only forced to avoid setting it to certain special cardinals with [[cofinality]] <math>\aleph_0</math>, meaning there is an unbounded function from <math>\aleph_0</math> to it (see [[Easton's theorem]]).
-->
== Alef-α untuk α umum ==
Untuk mendefinisikan <math>\aleph_\alpha</math> bagi bilangan ordinal sembarang <math>\alpha</math>, perlu didefinisikan [[successor cardinal|operasi kardinal penerus]], yang diberikan pada setiap bilangan kardinal ρ bilangan kardinal ρ{{sup|+}} berikutnya yang lebih besar dalam [[well-order|urutan teratur]] (jika [[axiom of choice|aksioma pilihan]] masih dipertahankan, inilah bilangan kardinal lebih besar berikutnya).
Maka bilangan-bilangan alef dapat didefinikan sebagai berikut:
:<math>\aleph_{0} = \omega</math>
:<math>\aleph_{\alpha+1} = \aleph_{\alpha}^+</math>
:<math>\aleph_{\lambda} = \bigcup_{\beta < \lambda} \aleph_\beta.</math>
<!--
==
:<math>\alpha\leq\omega_\alpha.</math>
:<math>\omega,\ \omega_\omega,\ \omega_{\omega_\omega},\ \ldots.</math>
Any [[inaccessible cardinal|weakly inaccessible cardinal]] is also a fixed point of the aleph function.<ref name="Harris 2009">{{cite web | url=http://kaharris.org/teaching/582/Lectures/lec31.pdf | title=Math 582 Intro to Set Theory, Lecture 31 | publisher=Department of Mathematics, University of Michigan | date=April 6, 2009 | accessdate=September 1, 2012 | author=Harris, Kenneth}}</ref> This can be shown in ZFC as follows. Suppose <math>\kappa = \aleph_\lambda</math> is a weakly inaccessible cardinal. If <math>\lambda</math> were a [[successor ordinal]], then <math>\aleph_\lambda</math> would be a [[successor cardinal]] and hence not weakly inaccessible. If <math>\lambda</math> were a [[limit ordinal]] less than <math> \kappa </math>, then its [[cofinality]] (and thus the cofinality of <math>\aleph_\lambda</math>) would be less than <math>\kappa </math> and so <math>\kappa </math> would not be regular and thus not weakly inaccessible. Thus <math>\lambda \geq \kappa </math> and consequently <math>\lambda = \kappa </math> which makes it a fixed point.
-->
== Peranan aksioma pilihan ==
Kardinalitas suatu [[bilangan ordinal]] tak terhingga adalah sebuah bilangan alef. Setiap bilangan alef adalah kardinalitas sejumlah bilangan ordinal. Yang terkecil di antaranya adalah [[initial ordinal|ordinal awal]]nya. Setiap himpunan yang kardinalitasnya adalah suatu bilangan alef adalah [[equinumerous|ekuinumeral]] dengan suatu bilangan ordinal dan karenanya dapat tertata baik (''well-orderable'').
<!--
Each [[finite set]] is well-orderable, but does not have an aleph as its cardinality.
Baris 92 ⟶ 125:
* [[Bilangan kardinal]]
== Referensi ==
{{reflist}}
== Pranala luar ==
* {{springer|title=Aleph-zero|id=p/a011280}}
* {{MathWorld | urlname=Aleph-0 | title=Aleph-0}}
<!-- [[he:אלף 0]] - this article is about aleph 0 specifically, not about aleph numbers. As of 2012-9-2- there is no page on hewiki that is a suitable interwiki target for this article, see talk page. -->
{{Authority control}}
{{DEFAULTSORT:Bilangan alef}}
[[
[[
|