Bilangan alef: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
←Membuat halaman berisi 'thumb|right|150px|Alef-nol (''aleph-null''), [[bilangan kardinal tak terhingga terkecil]] '''Bilangan alef''' ({{lang-en|aleph numbe...'
 
k Alef-nol: clean up
 
(21 revisi perantara oleh 12 pengguna tidak ditampilkan)
Baris 1:
{{Tanpa referensi|date=November 2021}}[[ImageBerkas:Aleph0.svg|thumbjmpl|rightka|150px|Alef-nol (''aleph-null''), [[bilangan kardinal]] [[takhinggatak hingga|tak terhingga]] terkecil]]
'''Bilangan alef''' ({{lang-en|aleph number}}) dalam [[teori himpunan]] (suatu bidang [[matematika]]) adalah suatu urutan bilangan yang digunakan untuk melambangkan [[bilangan kardinal|kardinalitas]] (atau ukuran) dari himpunan tak terhingga (''infinite set''). Dinamakan menurut simbol yang dipakai, yaitu [[abjad Ibrani|huruf Ibrani]] "[[alef]]" (<math>\aleph</math>).{{efn|
Dalam buku matematika lama, huruf alef dicetak terbalik secara tidak sengaja–misalnya, dalam Sierpiński (1958)<ref name=Sierpiński-1958>{{cite book |last=Sierpiński |first= Wacław |year=1958 |title=Cardinal and Ordinal Numbers |title-link=Cardinal and Ordinal Numbers |series=Polska Akademia Nauk Monografie Matematyczne |volume= 34 |publisher=Państwowe Wydawnictwo Naukowe |place=Warsaw, PL |mr=0095787}}
</ref>{{rp|page=402}} huruf alef muncul dengan cara yang benar keatas dan terbalik–sebagian karena matriks [[monotipe]] untuk alef salah dibangun dengan posisi cara yang salah.<ref>
{{cite book
|last1=Swanson |first1=Ellen
|last2=O'Sean |first2=Arlene Ann
|last3=Schleyer |first3=Antoinette Tingley
|year=1999 |orig-year=1979
|edition=updated
|title=Mathematics into type: Copy editing and proofreading of mathematics for editorial assistants and authors
|url=https://archive.org/details/mathematicsintot00swan |publisher=[[American Mathematical Society]]
|place=Providence, RI
|isbn=0-8218-0053-1
|mr=0553111
|page=[https://archive.org/details/mathematicsintot00swan/page/n22 16]
}}
</ref>
}}
 
Kardinalitas [[bilangan asli]] adalah <math>\aleph_0</math> (dibaca "alef-nol" (''aleph-null''), atau kadangkalakadang kala dalam [[bahasa Inggris]] juga disebut ''aleph-naught'' atau ''aleph-zero''). Kardinalitas berikutnya yang lebih besar adalah "alef-satu" (''aleph-one'') <math>\aleph_1</math>, kemudian <math>\aleph_2</math> dan seterusnya. Jika terus dilanjutkan, dimungkinkan untuk mendefinisikan suatu [[bilangan kardinal]] <math>\aleph_\alpha</math> untuk setiap [[bilangan ordinal]] α, sebagaimana dinyatakan di bawahdibawah.
 
Konsep ini berasal dari [[Georg Cantor]],<ref>{{cite yang mendefinisikan pengertian kardinalitas dan menyadari bahwa himpunan tak terhingga dapat mempunyai kardinalitas yang berbeda.web
|first=Jeff |last=Miller
<!--
|title=Earliest uses of symbols of set theory and logic
The aleph numbers differ from the [[Extended real number line|infinity]] (∞) commonly found in algebra and calculus. Alephs measure the sizes of sets; infinity, on the other hand, is commonly defined as an extreme [[limit (mathematics)|limit]] of the [[real number line]] (applied to a [[function (mathematics)|function]] or [[sequence (mathematics)|sequence]] that "[[divergent series|diverges]] to infinity" or "increases without bound"), or an extreme point of the [[extended real number line]].
|website=jeff560.tripod.com
-->
|url=http://jeff560.tripod.com/set.html
==Alef-nol==
|access-date=2016-05-05
<math>\aleph_0</math> adalah kardinalitas dari semua [[bilangan asli]], dan merupakan suatu [[bilangan transfinit|kardinal tak terhingga]]. Himpunan semua [[bilangan ordinal]] finit, dinamakan '''ω''' atau '''ω<sub>0</sub>''', mempunyai kardinalitas <math>\aleph_0</math>. Suatu himpunan mempunyai kardinalitas <math>\aleph_0</math> [[jika dan hanya jika]] bilangan itu [[:en:countably infinite|terhitung sebagai tak terhingga]], yaitu, ada [[:en:bijection|bijeksi]] (kesesuaian satu lawan satu) di antaranya dan bilangan-bilangan asli. Contoh-contoh himpunan semacam itu adalah:
|postscript=;
}} who quotes
{{cite book
|author=Dauben, Joseph Warren
|date=1990
|title=Georg Cantor: His mathematics and philosophy of the infinite
|isbn=9780691024479
|url-access=registration
|url=https://archive.org/details/georgcantorhisma0000daub
|quote=Bilangan barunya layak mendapatkan sesuatu yang unik. ... Tidak ingin menciptakan simbol baru sendiri, ia memilih alef, huruf pertama dari alfabet Ibrani ... alef dapat dianggap mewakili awal yang baru ...
}}</ref> yang mendefinisikan pengertian kardinalitas dan menyadari bahwa himpunan tak terhingga dapat mempunyai kardinalitas yang berbeda.
 
Bilangan alef berbeda dari [[Tak hingga|tak-hingga]] (∞) yang biasa ditemukan dalam aljabar dan [[kalkulus]]. Bilangan alef mengukur ukuran himpunan secara tak-hingga, di sisi lain pada umumnya didefinisikan sebagai [[limit (matematika)|limit]] ekstrim dari [[garis bilangan real]] (diterapkan ke [[fungsi (matematika)|fungsi]] atau [[urutan (matematika)|urutan]] yang "[[deret divergen|divergen]] ke tak hingga" atau "menambah tanpa batas"), atau titik ekstrim dari [[garis bilangan real diperluas]].
* himpunan semua [[bilangan kuadrat]], himpunan semua [[bilangan kubik]], himpunan semua bilangan [[pangkat empat]], ...
 
* himpunan semua [[pangkat sempurna]], himpunan semua [[pangkat prima]],
== Alef-nol ==
<math>\aleph_0</math> adalah kardinalitas dari semua [[bilangan asli]], dan merupakan suatu [[bilangan transfinit|"bilangan transfinit" atau "kardinal tak terhinggahingga"]]. Himpunan semua [[bilangan ordinal]] finit, dinamakan '''ω''' atau '''ω<sub>0</sub>''', mempunyai kardinalitas <math>\aleph_0</math>. Suatu himpunan mempunyai kardinalitas <math>\aleph_0</math> [[jika dan hanya jika]] bilangan itu [[:en:countably infinite|terhitung sebagai tak terhinggahingga]], yaitu, ada [[:en:bijection|bijeksi]] (kesesuaian satu lawan satu) di antaranya dan bilangan-bilangan asli. Contoh-contoh himpunan semacam itutersebut adalah:
 
* himpunan semua bilangan [[bilanganpangkat dua|kuadrat]], himpunan semua bilangan [[bilanganPangkat tiga|kubik]], himpunan semua bilangan [[eksponen|pangkat empat]], ...
* himpunan semua [[eksponen|pangkat sempurna]], himpunan semua [[eksponen|pangkat prima]],
* himpunan semua [[bilangan genap]], himpunan semua [[bilangan ganjil]],
* himpunan semua [[bilangan prima]], himpunan semua [[bilangan komposit]],
* himpunan semua [[bilangan bulat]],
* himpunan semua [[bilangan rasional]],
* himpunan semua [[:en:algebraic number|bilangan aljabar]],
* himpunan semua [[:en:computable number|bilangan komputabel]],
* himpunan semua [[:en:definable number|bilangan definabel]],
* himpunan semua [[:en:string (computerilmu sciencekomputer)|string]] [[biner]] dengan panjang finithingga, dan
* himpunan semua [[subsethimpunan bagian]] finithingga dari semua himpunan yang dapat terhitung sebagai tak terhinggahingga.
 
<!--
TheseOrdinal tak infinitehingga ordinalsini: ω<math>\,\omega\;,</math> ω<math>\,\omega+1\;,</math> ω.2<math>\,\omega\,\cdot2\,,\,</math> ω<supmath>\,\omega^{2}\,,</supmath>, ω<supmath>ω\,\omega^{\omega}\,</supmath> anddan [[OrdinalBilangan numberEpsilon|ε<submath>\,\varepsilon_{0}\,</submath>]] areadalah amongsalah thesatu countably[[Himpunan infinitetakhingga|himpunan setstak hingga]] yang terhitung.<ref>{{Citation | last1=Jech | first1=Thomas | title=Set Theory | publisher= [[Springer-Verlag]]| location=Berlin, New York | series=Springer Monographs in Mathematics | year=2003}}</ref> For exampleMisalnya, the sequencebarisan (withdengan [[ordinalityordinalitas]] ω.·2) ofdari semua allbilangan positivebulat oddganjil integerspositif followeddiikuti byoleh allsemua positivebilangan evenbulat integersgenap positif
 
:{1, 3, 5, 7, 9, ..., 2, 4, 6, 8, 10, ...}
 
isadalah anurutan ordering of the sethimpunan (withdengan cardinalitykardinalitas <math>\aleph_0</math>) ofdari positivebilangan integersbulat positif.
 
If theJika [[axiomaksioma ofpilihan countable choiceterhitung]] (aversi weakeryang versionlebih oflemah thedari [[axiom ofaksioma choicepilihan]]) holdsberlaku, thenmaka <math>\aleph_0</math> islebih smallerkecil thandari anykardinal othertak infinitehingga cardinallainnya.
 
==Aleph Alef-onesatu ==
<math>\aleph_1</math> isadalah thekardinalitas cardinalitydari ofhimpunan the set of all countablesemua [[bilangan ordinal number]]s yang terhitung, calleddisebut '''ω<sub>1</sub>''' oratau (sometimeskadang-kadang) '''Ω'''. This '''ω<sub>1</sub>''' issendiri itselfadalah ansuatu bilangan ordinal numberyang largerlebih thanbesar alldari countablesemua ones,bilangan soordinal ityang isterhitung, ansehingga merupakan suatu [[uncountable set|himpunan tak terhitung]]. Therefore Jadi, <math>\aleph_1</math> isberbeda distinct fromdari <math>\aleph_0</math>. The definition ofDefinisi <math>\aleph_1</math> impliesmenyiratkan (indalam ZF, [[Zermelo–Fraenkel set theory|teori himpunan Zermelo–Fraenkel]] ''withouttanpa'' theaksioma axiom of choicepilihan) thatbahwa notidak cardinalada numberbilangan isordinal betweenantara <math>\aleph_0</math> anddan <math>\aleph_1</math>.<!-- If the [[axiom of choice]] (AC) is used, it can be further proved that the class of cardinal numbers is [[totally ordered]], and thus <math>\aleph_1</math> is the second-smallest infinite cardinal number. Using AC we can show one of the most useful properties of the set '''ω<sub>1</sub>''': any countable subset of '''ω<sub>1</sub>''' has an upper bound in '''ω<sub>1</sub>'''. (This follows from the fact that a countable union of countable sets is countable, one of the most common applications of AC.) This fact is analogous to the situation in <math>\aleph_0</math>: every finite set of natural numbers has a maximum which is also a natural number, and [[Union (set theory)#Finite unions|finite unions]] of finite sets are finite.
 
'''ω<sub>1</sub>''' is actually a useful concept, if somewhat exotic-sounding. An example application is "closing" with respect to countable operations; e.g., trying to explicitly describe the [[sigma-algebra|σ-algebra]] generated by an arbitrary collection of subsets (see e.&nbsp;g. [[Borel hierarchy]]). This is harder than most explicit descriptions of "generation" in algebra ([[vector space]]s, [[group theory|group]]s, etc.) because in those cases we only have to close with respect to finite operations—sums, products, and the like. The process involves defining, for each countable ordinal, via [[transfinite induction]], a set by "throwing in" all possible countable unions and complements, and taking the union of all that over all of '''ω<sub>1</sub>'''.
-->
 
== Hipotesis kontinum ==
==The continuum hypothesis==
{{main|ContinuumHipotesis hypothesiskontinum}}
{{see also|BethBilangan numberbeth}}
The [[cardinalityKardinalitas]] ofsuatu the set ofhimpunan [[bilangan real number]]s ([[cardinality of the continuum|kardinalitas continuum]]) isadalah <math>2^{\aleph_0}</math>. ItTidak cannotdapat beditentukan determined fromdari ZFC ([[Zermelo–Fraenkel set theory|teori himpunan Zermelo-Fraenkel]] with thedengan [[axiom of choice|aksioma pilihan]]) wheredi thismana numberbilangan fitsini exactlytepat inmasuk thedalam alephhierarki numberbilangan hierarchyalef, buttetapi it follows frommenuruti ZFC thatbahwa the[[hipotesis]] continuumkontinum hypothesis, '''CH''',ekuivalen isdengan equivalent to thepersamaan identityidentitas
 
:<math>2^{\aleph_0}=\aleph_1.</math>
<!--
 
CH is independent of ZFC: it can be neither proven nor disproven within the context of that axiom system (provided that ZFC is consistent). That it is consistent with ZFC was demonstrated by [[Kurt Gödel]] in 1940 when he showed that its negation is not a theorem of ZFC. That it is independent of ZFC was demonstrated by [[Paul Cohen (mathematician)|Paul Cohen]] in 1963 when he showed, conversely, that the CH itself is not a theorem of ZFC by the (then novel) method of [[Forcing (mathematics)|forcing]].
-->
 
==Aleph Alef ==
ConventionallySecara the smallestkonvensional, infinitebilangan ordinal istak denotedterhingga terkecil dilambangkan dengan ω, anddan thebilangan cardinal numberkardinal <math>\aleph_\omega</math> is themerupakan leastbatas upperatas boundterkecil ofdari
:<math>\left\{\,\aleph_n : n\in\left\{\,0,1,2,\dots\,\right\}\,\right\}</math>
di antara bilangan-bilangan alef.
among alephs.
<!--
 
Aleph-ω is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory ''not'' to be equal to the cardinality of the set of all [[real number]]s; for any positive integer n we can consistently assume that <math>2^{\aleph_0} = \aleph_n</math>, and moreover it is possible to assume <math>2^{\aleph_0}</math> is as large as we like. We are only forced to avoid setting it to certain special cardinals with [[cofinality]] <math>\aleph_0</math>, meaning there is an unbounded function from <math>\aleph_0</math> to it (see [[Easton's theorem]]).
-->
== Alef-α untuk α umum ==
Untuk mendefinisikan <math>\aleph_\alpha</math> bagi bilangan ordinal sembarang <math>\alpha</math>, perlu didefinisikan [[successor cardinal|operasi kardinal penerus]], yang diberikan pada setiap bilangan kardinal ρ bilangan kardinal ρ{{sup|+}} berikutnya yang lebih besar dalam [[well-order|urutan teratur]] (jika [[axiom of choice|aksioma pilihan]] masih dipertahankan, inilah bilangan kardinal lebih besar berikutnya).
 
Maka bilangan-bilangan alef dapat didefinikan sebagai berikut:
==Aleph-α for general α==
To define <math>\aleph_\alpha</math> for arbitrary ordinal number <math>\alpha</math>, we must define the [[successor cardinal|successor cardinal operation]], which assigns to any cardinal number ρ the next larger [[well-order]]ed cardinal ρ{{sup|+}} (if the [[axiom of choice]] holds, this is the next larger cardinal).
 
We can then define the aleph numbers as follows:
 
:<math>\aleph_{0} = \omega</math>
:<math>\aleph_{\alpha+1} = \aleph_{\alpha}^+</math>
 
anddan foruntuk λ, ansuatu infiniteordinal limit ordinaltak terhingga,
 
:<math>\aleph_{\lambda} = \bigcup_{\beta < \lambda} \aleph_\beta.</math>
 
TheOrdinal α-thawal infinitetak initialterhingga ordinalke-α is writtenditulis <math>\omega_\alpha</math>. Kardinalitasnya Its cardinality is writtenditulis <math>\aleph_\alpha</math>. SeeLihat [[initial ordinal|ordinal awal]].
<!--
 
InDalam ZFC, thefungsi <math>\aleph</math> functionadalah is asuatu [[bijection|bijeksi]] betweenantara thebilangan-bilangan ordinalsordinal anddan thekardinal infinitetak cardinalsterhingga.<ref>{{PlanetMath | urlname=AlephNumbers | title=aleph numbers | id=5710}}</ref>
 
==Fixed pointsTitik oftetap omega==
ForUntuk anysetiap ordinal α we haveada
:<math>\alpha\leq\omega_\alpha.</math>
InDalam manybanyak caseskasus <math>\omega_{\alpha}</math> issecara strictlysempit greaterlebih thanbesar dari α. For exampleContohnya, forini anybenar successoruntuk setiap ordinal αpenerus this holdsα.--> <!--There are, however, some limit ordinals which are [[fixed point (mathematics)|fixed point]]s of the omega function, because of the [[fixed-point lemma for normal functions]]. The first such is the limit of the sequence
 
:<math>\omega,\ \omega_\omega,\ \omega_{\omega_\omega},\ \ldots.</math>
 
Any [[inaccessible cardinal|weakly inaccessible cardinal]] is also a fixed point of the aleph function.<ref name="Harris 2009">{{cite web | url=http://kaharris.org/teaching/582/Lectures/lec31.pdf | title=Math 582 Intro to Set Theory, Lecture 31 | publisher=Department of Mathematics, University of Michigan | date=April 6, 2009 | accessdate=September 1, 2012 | author=Harris, Kenneth}}</ref> This can be shown in ZFC as follows. Suppose <math>\kappa = \aleph_\lambda</math> is a weakly inaccessible cardinal. If <math>\lambda</math> were a [[successor ordinal]], then <math>\aleph_\lambda</math> would be a [[successor cardinal]] and hence not weakly inaccessible. If <math>\lambda</math> were a [[limit ordinal]] less than <math> \kappa </math>, then its [[cofinality]] (and thus the cofinality of <math>\aleph_\lambda</math>) would be less than <math>\kappa </math> and so <math>\kappa </math> would not be regular and thus not weakly inaccessible. Thus <math>\lambda \geq \kappa </math> and consequently <math>\lambda = \kappa </math> which makes it a fixed point.
-->
== Peranan aksioma pilihan ==
 
Kardinalitas suatu [[bilangan ordinal]] tak terhingga adalah sebuah bilangan alef. Setiap bilangan alef adalah kardinalitas sejumlah bilangan ordinal. Yang terkecil di antaranya adalah [[initial ordinal|ordinal awal]]nya. Setiap himpunan yang kardinalitasnya adalah suatu bilangan alef adalah [[equinumerous|ekuinumeral]] dengan suatu bilangan ordinal dan karenanya dapat tertata baik (''well-orderable'').
==Role of axiom of choice==
<!--
 
The cardinality of any infinite [[ordinal number]] is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its [[initial ordinal]]. Any set whose cardinality is an aleph is [[equinumerous]] with an ordinal and is thus well-orderable.
 
Each [[finite set]] is well-orderable, but does not have an aleph as its cardinality.
 
Baris 92 ⟶ 125:
* [[Bilangan kardinal]]
 
== Referensi ==
{{reflist}}
 
== Pranala luar ==
* {{springer|title=Aleph-zero|id=p/a011280}}
* {{MathWorld | urlname=Aleph-0 | title=Aleph-0}}
 
<!-- [[he:אלף 0]] - this article is about aleph 0 specifically, not about aleph numbers. As of 2012-9-2- there is no page on hewiki that is a suitable interwiki target for this article, see talk page. -->
 
{{Authority control}}
 
{{DEFAULTSORT:Bilangan alef}}
[[CategoryKategori: Bilangan]]
[[CategoryKategori:Matematika]]