Pembuktian melalui kontradiksi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Arkwatem (bicara | kontrib)
←Membuat halaman berisi ''''Pembuktian melalui kontradiksi''' ({{lang-la|'''reductio ad absurdum'''}}, 'reduksi ke yang absurd), adalah argumen logika yang dimulai dengan suatu asumsi, lalu d...'
 
k Bahan bacaan: clean up
 
(31 revisi perantara oleh 21 pengguna tidak ditampilkan)
Baris 1:
'''Pembuktian melalui kontradiksi''' ({{lang-la|'''reductio ad absurdum'''}}, 'reduksi ke yang [[absurd]]', {{lang-en|'''proof by contradiction'''}}, 'bukti oleh kontradiksi'), adalah [[argumen logika]] yang dimulai dengan suatu asumsi, lalu dari asumsi tersebut diturunkan suatu hasil yang absurd, tidak masuk akal, atau [[kontradisi|kontradiktif]], sehingga dapat diambil kesimpulan bahwa asumsi tadi adalah salah (dan [[ingkaran]]nya benar). Dalam disiplin [[matematika]] dan [[logika]], pembuktian melalui kontradiksi merujuk secara khusus kepada argumen dimana sebuah kontradiksi dihasilkan dari suatu asumsi (sehingga membuktikan asumsi tadi salah)
 
Argumen ini menggunakan [[hukum non-kontradiksi]] - yaitu suatu pernyataan tidak mungkin benar dan salah sekaligus. Frase Latin
''{{lang|la|reductio ad absurdum}}'' berasal dari frasi [[Bahasa Yunani Kuno|Yunani]] {{polytonic|ἡ εἰς ἄτοπον ἀπαγωγή}} yang berarti sama, digunakan oleh filsuf [[Aristoteles]].
 
== Penjelasan ==
{{logika-stub}}
 
[[Kategori:Pembuktian]]
Dalam disiplin [[logika]] formal, pembuktian melalui kontradiksi digunakan ketika sebuah kontradiksi (formal) dapat dihasilkan dari suatu [[premis]], sehingga dapat disimpulkan bahwa premis tersebut salah. Jika kontradiksi tersebut dihasilkan dari beberapa (lebih dari satu) premis, kesimpulannya adalah satu atau lebih dari premis tersebut adalah salah. Dalam kasus terakhir, metode lain harus digunakan untuk membuktikan premis mana saja yang salah.
 
Suatu [[pernyataan matematis]] kadang-kadang dibuktikan dengan cara pembuktian melalui kontradiksi, dengan cara mengasumsikan [[ingkaran]] (negasi) dari pernyataan yang hendak dibuktikan, lalu dari asumsi ini diturunkan sebuah kontradiksi. Ketika kontradiksi dapat dicapai secara logika, asumsi tadi telah terbukti salah, sehingga pernyataan tersebut benar.
 
Pembuktian melalui kontradiksi atau ''reductio ad absurdum'' bukanlah sebuah argumen yang salah, sebaliknya jika dilakukan dengan benar merupakan argumen yang sah. Jika pembuktian melalui kontradiksi menghasilkan kesalahan, kesalahan tersebut terletak pada kesalahan pada proses penurunan kontradiksi, bukan pada cara pembuktiannya.
 
== Contoh ==
Contoh klasik pembuktian melalui kontradiksi pada zaman Yunani Kuno adalah pembuktian bahwa [[akar kuadrat dari dua]] merupakan [[bilangan irasional]] (tidak bisa dinyatakan sebagai perbandingan [[bilangan bulat]]). Pernyataan ini dapat dibuktikan dengan cara mengasumsikan sebaliknya bahwa √2 adalah [[bilangan rasional]], sehingga bisa dinyatakan sebagai [[perbandingan]] [[bilangan bulat]] ''a''/''b'' dalam pecahan yang paling sederhana. Tapi jika ''a''/''b'' = √2, maka ''a''<sup>2</sup> = 2''b''<sup>2</sup>. Ini berarti ''a''<sup>2</sup> adalah [[bilangan genap]]. Karena [[kuadrat]] dari [[bilangan ganjil]] tidak mungkin genap, maka ''a'' adalah bilangan genap. Karena ''a''/''b'' adalah pecahan paling sederhana ''b'' pastilah ganjil (sebab pecahan genap/genap masih bisa disederhanakan). Namun karena ''a'' adalah bilangan genap (anggap 2''r'' artinya ''a''<sup>2</sup> (4''r''<sup>2</sup>) adalah bilangan kelipatan 4, dan ''b''<sup>2</sup> adalah bilangan kelipatan 2 (genap). Hal ini berarti ''b'' juga merupakan bilangan genap, dan ini merupakan kontradiksi terhadap kesimpulan sebelumnya bahwa ''b'' pastilah ganjil. Karena asumsi awal bahwa √2 adalah rasional mengakibatkan terjadinya kontradiksi, asumsi tersebut pastilah salah, dan ingkarannya (bahwa √2 adalah irasional) merupakan pernyataan yang benar.
 
== Lihat pula ==
* [[Analogi|Penalaran analogis]]
* [[Induksi matematika]]
* [[Penjelasan]]
* [[Pembuktian melalui abduksi]]
* [[Pembuktian melalui deduksi]]
* [[Pembuktian melalui induksi]]
* [[Retroduksi|Pembuktian melalui retroduktif]]
 
== Bahan bacaan ==
* J. Franklin and A. Daoud, ''Proof in Mathematics: An Introduction'', Quakers Hill Press, 1996, ch. 6
 
[[Kategori:Pembuktian matematis]]
[[Kategori:Istilah matematika]]
 
[[Kategori:Logika]]
 
[[zh-min-nan:Hoán-chèng-hoat]]
{{logika-stub}}
[[bs:Reductio ad absurdum]]
[[ca:Prova per contradicció]]
[[cs:Důkaz sporem]]
[[de:Reductio ad absurdum]]
[[en:Reductio ad absurdum]]
[[et:Vastuväiteline tõestus]]
[[es:Reducción al absurdo]]
[[eo:Pruvo per disputo]]
[[fa:برهان خلف]]
[[fr:Raisonnement par l'absurde]]
[[ko:귀류법]]
[[is:Niðursöllun í fáránleika]]
[[it:Dimostrazione per assurdo]]
[[he:הוכחה בדרך השלילה]]
[[la:Reductio ad absurdum]]
[[hu:Reductio ad absurdum]]
[[nl:Reductio ad absurdum]]
[[ja:背理法]]
[[no:Reductio ad absurdum]]
[[nn:Reductio ad absurdum]]
[[pl:Dowód nie wprost]]
[[pt:Prova por contradição]]
[[ru:Доказательство от противного]]
[[simple:Reductio ad absurdum]]
[[sl:Dokaz s protislovjem]]
[[sr:Свођење на контрадикцију]]
[[fi:Reductio ad absurdum]]
[[sv:Indirekt bevis]]
[[tr:Reductio ad absurdum]]
[[zh-yue:反證法]]
[[zh:反證法]]