Vektor Euklides: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Menambahkan referensi |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(13 revisi perantara oleh 8 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Vector AB from A to B.svg|ka|jmpl|Sebuah vektor dari ''A'' ke ''B''.]]
'''Vektor''' '''spasial''' atau '''vektor Euclides'''; biasa disebut vektor dalam [[matematika]] dan [[fisika]] adalah objek geometri yang memiliki besar dan arah.<ref>{{Cite web|title=vector {{!}} Definition & Facts|url=https://www.britannica.com/science/vector-mathematics|website=Encyclopedia Britannica|language=en|access-date=2020-08-20}}</ref> Vektor
* {{OED|vector ''n.''}}
* {{cite web | author = Miller J. | year = 2007 | url = http://members.aol.com/jeff570/v.html | title = Earliest Known Uses of Some of the Words of Mathematics | accessdate = 2008-08-25 | archiveurl =
== Panjang ==
Baris 13 ⟶ 10:
:<math>\left\|\mathbf{a}\right\|=\sqrt{{a_1}^2+{a_2}^2+{a_3}^2}</math>
yang merupakan konsekuensi dari [[Teorema Pythagoras]] karena vektor dasar '''e'''<sub>1</sub>, '''e'''<sub>2</sub>, '''e'''<sub>3</sub> merupakan vektor-vektor satuan ortogonal. Ini sama dengan akar pangkat dua [[:en:dot product|produk titik]] dari vektor itu sendiri:<ref>{{Cite web|date=2013-11-07|title=1.1: Vectors|url=https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/1%3A_Vector_Basics/1.1%3A_Vectors|website=Mathematics LibreTexts|language=en|access-date=2020-08-21}}</ref>
:<math>\left\|\mathbf{a}\right\|=\sqrt{\mathbf{a}\cdot\mathbf{a}}.</math>
;Vektor satuan
[[Berkas:Vector normalization.svg|jmpl|ka|Normalisasi suatu vektor '''a''' menjadi vektor satuan '''â''']]
{{main|Vektor satuan}}
"Vektor satuan" (
Untuk menormalisasi suatu vektor '''a''' = [''a''<sub>1</sub>, ''a''<sub>2</sub>, ''a''<sub>3</sub>], bagilah vektor itu dengan panjangnya ||'''a'''||. Jadi:
Baris 29 ⟶ 24:
:<math>\mathbf{\hat{a}} = \frac{\mathbf{a}}{\left\|\mathbf{a}\right\|} = \frac{a_1}{\left\|\mathbf{a}\right\|}\mathbf{e}_1 + \frac{a_2}{\left\|\mathbf{a}\right\|}\mathbf{e}_2 + \frac{a_3}{\left\|\mathbf{a}\right\|}\mathbf{e}_3</math>
;[[Vektor nol]] (''null vector'')
{{main|Vektor nol}}
Baris 35 ⟶ 30:
== Kesamaan dua vektor ==
Dua buah vektor dikatakan sama apabila keduanya memiliki panjang dan arah yang sama.{{Sfn|Vince|2009|p=2}}
== Kesejajaran dua vektor ==
Baris 79 ⟶ 74:
== Bacaan Lebih Lanjut ==
* {{cite book|last= Kurnianingsih|first= Sri|authorlink=|coauthors=Kuntarti, Sulistiyono|title=Matematika SMA dan MA 3A Untuk Kelas XII Semester 1 Program IPA|year= 2007|publisher= Esis/Erlangga|location= Jakarta|id= ISBN 979-734-504-1 }} {{id icon}}
== Daftar Pustaka ==
{{refbegin|1}}
{{cite book|title=Vector Analysis for Computer Graphics|url=https://archive.org/details/vectoranalysisfo00vinc_941|last=Vince|first=John|publisher=Springer|year=2007|isbn=978-1-84628-803-6|location=London|pages=[https://archive.org/details/vectoranalysisfo00vinc_941/page/n12 2]|ref={{sfnref|Vince|2007}}|url-status=live}}
== Pranala luar ==
Baris 84 ⟶ 83:
{{Wikibooks|Soal-Soal Fisika|Vektor}}
* {{id}} [http://www.gurumuda.com/vektor-skalar Besaran vektor dan skalar]
* {{en}} [http://wwwppd.nrl.navy.mil/nrlformulary/vector_identities.pdf Online vector identities] {{Webarchive|url=https://web.archive.org/web/20120801005307/http://wwwppd.nrl.navy.mil/nrlformulary/vector_identities.pdf |date=2012-08-01 }} ([[Portable Document Format|PDF]])
{{Aljabar linear}}
{{Authority control}}
[[Kategori:Aljabar abstrak]]
|