Poligon: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Ariyanto (bicara | kontrib)
k Bersih-bersih (via JWB)
Dedhert.Jr (bicara | kontrib)
 
(1 revisi perantara oleh pengguna yang sama tidak ditampilkan)
Baris 1:
[[Berkas:Assorted polygons.svg|jmpl|Berbagai macam poligon|400x400px]]Dalam [[geometri]], '''poligon''' atau '''segi banyak''' adalah bangun datar yang digambarkan dengan jumlah terhingga dari [[Garis (geometri)|garis]] lurus yang terhubung, sehingga membentuk sebuah [[rantai poligon]]al (atau sirkuit poligonal) yang tertutup.
 
Ruas garis dari sirkuit poligonal disebut sebagai [[Sisi (geometri)|sisi]]. Perpotongan dari dua sisi pada poligon dikenal sebagai [[titik pojoksudut]]. '''Segi-''n''''' adalah sebuah poligon yang mempunyai <math>n</math> sisi, contohnya, segi-3 ([[segitiga]]).
 
[[Poligon sederhana]] adalah sebuah poligon yang tidak saling berpotongan diri. Akan tetapi, para matematikawan seringkali hanya melibatkan rantai poligonal terbatas dari poligon sederhana, dan karena itu mereka seringkali mendefinisikannya sebagai poligon. Sebuah batas poligonal dapat diperbolehkan untuk berpotongan terhadap dirinya, sehingga mengakibatkan terbentuknya [[poligon bintang]] dan [[Daftar poligon berpotongan diri|poligon yang saling berpotongan diri]] lainnya.
Baris 18:
=== Konveksitas dan non-konveksitas ===
Poligon dapat dicirikan berdasarkan jenis konveksitas (kecembungan) atau non-konveksitas:
* Poligon [[poligon cembung|konveks]] atau [[poligon cembung|cembung]]: sebarang garis yang ditarik melalui poligon (dan tidak menyinggung sisi atau titik pojoksudut) akan bertemu ke batas poligon, tepatnya dua. Akibatnya, semua sudut dalam kurang dari 180°. Dengan kata lain, untuk sebarang ruas garis dengan titik akhir di batas poligon, hanya akan melewati titik dalam di sekitar titik akhir.
* Poligon non-cembung: sebuah garis dapat ditemukan ketika bertemu ke batasnya lebih dari dua kali. Dengan kata lain, terdapat sebuah ruas garis di antara dua titik batas yang melalui poligon.
* [[Poligon sederhana]]: batas poligon tidak menyilang dirinya sendiri. Semua poligon cembung berbentuk sederhana.
Baris 27:
 
=== Kesetaraan dan simetri ===
* [[Poligon sama sudut]]: semua sudut di titik pojoksudut adalah sama.
* [[Poligon sama sisi]]: semua sisi memiliki panjang yang sama.
* [[Poligon beraturan]]: sebuah poligon berarti mempunyai sudut dan sisi yang sama.
Baris 43:
[[Berkas:Winkelsumme-polygon.svg|jmpl|Segi-<math>n</math> dibagi menjadi <math>n-2</math> segitiga.]]
Sebarang poligon memiliki banyak sudut yang sama dengan banyaknya sisi. Masing-masing sudut di poligon memiliki beberapa sudut. Dua sudut yang terpenting, di antaranya:
* '''[[Sudut dalam]]'''–Jumlah: Jumlah dari sudut dalam segi-<math>n</math> sederhana sama dengan <math>(n-2) \times \pi</math> [[radian]] (atau dalam bentuk [[derajat (sudut)|derajat]], <math>(n-2) \times 180^\circ</math>). Ini dikarenakan sebarang segi-''<math>n</math>'' sederhana (poligon yang memiliki ''<math>n</math>'' sisi) dapat dipandang mempunyai <math>n-2</math> segitiga, sehingga jumlah dari masing-masing sudut sama dengan π radian atau 180 derajat. Ukuran dari sebarang sudut dalam dari segi-''<math>n</math>'' beraturan cembung bernilai <math>\left(1-\tfrac{2}{n}\right)\pi</math> radian atau <math>180-\tfrac{360}{n}</math> derajat. Sudut dalam dari [[poligon bintang]] beraturan pertama kali dipelajari oleh Poinsot. Pada makalah tersebut, Poinsot menjelaskan empat [[Polihedron Kepler–Poinsot|polihedron bintang beraturan]] sebagai berikut: untuk sebuah segi-<math>\tfrac{p}{q}</math> (sebuah segi-<math>p</math> dengan kepadatan pusat <math>q</math>), maka masing-masing sudut dalam bernilai <math>\tfrac{\pi(p-2q)}{p}</math> radian atau <math>\tfrac{180(p-2q)}{p}</math> derajat.<ref>{{cite book|last=Kappraff|first=Jay|year=2002|url=https://books.google.com/books?id=vAfBrK678_kC&pg=PA256&dq=star+polygon|title=Beyond measure: a guided tour through nature, myth, and number|publisher=World Scientific|isbn=978-981-02-4702-7|page=258|url-status=live}}</ref>
* '''[[Sudut luar]]'''–Sudut: Sudut luar adalah [[Sudut suplemen|suplemen]] dari sudut dalam. Ketika menggambar garis di suatu sisi segi-''<math>n</math>'' cembung, maka sudut "berputar" ke suatu titik pojoksudut yang merupakan sudut luar. Dengan menggambarnya di seluruh sisi poligon akan membentuk satu [[Putaran (geometri)|putaran]] penuh, sehingga jumlah sudut luar harus bernilai 360°. Argumen ini dapat diperumum untuk poligon sederhana cekung, jika sudut luar yang berputar ke arah berlawanan dikurangi dari total putaran. Dengan menggambarkannya di keliling segi-<math>n</math>, maka jumlah dari sudut luar (dalam artian, jumlah total yang berputar di titik pojoksudut) sama dengan kelipatan bilangan bulat <math>d</math> dari 360°, sebagai contoh: 720° untuk [[pentagram]] dan 0° untuk [[antiparallelogram]], dengan ''<math>d</math>'' adalah [[Densitas (politop)|densitas]] atau ''turning number'' dari poligon. Lihat pula [[orbit (dinamika)]].
 
=== Luas ===
Misalkan titik pojoksudut dari poligon dinyatakan sebagai <math>(x_0, y_0), (x_1, y_1), \ldots, (x_{n - 1}, y_{n - 1})</math>. Penggunaan notasi {{math|1=(''x<sub>n</sub>'', ''y<sub>n</sub>'') = (''x''<sub>0</sub>, ''y''<sub>0</sub>)}} juga akan dipakai.
 
==== Poligon sederhana ====
Baris 62:
Math. Debrecen 1, 42–50 (1949)</ref><ref>{{cite web|last=Bourke|first=Paul|date=Juli 1988|title=Calculating The Area And Centroid Of A Polygon|url=http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf|work=|publisher=|archive-url=https://web.archive.org/web/20120916104133/http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf|archive-date=2012-09-16|dead-url=yes|accessdate=6 Feb 2013}}</ref>
 
Luas bertanda bergantung pada orde dari titik pojoksudut dan orde dari [[orientasi (ruang vektor)|orientasi]] bidang. Secara umum, orientasi bernilai positif didefinisikan dengan memutar (ke lawan arah jarum jam) yang memetakan sumbu-<math>x</math> positif ke sumbu-<math>y</math> positif. Luas bertanda akan positif jika titik pojoksudut diorde ke lawan arah jarum jam (dalam artian, berdasarkan orientasi bernilai positif), dan begitupula untuk kebalikannya, sehingga dengan demikian, rumus untuk luas poligon benar dalam [[nilai absolut|nilai mutlak]]. Rumus ini umum dikenal sebagai [[rumus tali sepatu]] atau ''surveyor's formula'' ({{Lang-id|rumus surveyor}}).<ref>{{cite journal|author=Bart Braden|year=1986|title=The Surveyor's Area Formula|url=http://www.maa.org/pubs/Calc_articles/ma063.pdf|journal=The College Mathematics Journal|volume=17|issue=4|pages=326–337|doi=10.2307/2686282|archive-url=https://web.archive.org/web/20121107190918/http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-date=2012-11-07}}</ref>
 
Luas <math>A</math> dari poligon sederhana juga dapat dihitung jika diketahui panjang sisi <math>a_1,a_2,\dots,a_n</math> dan [[sudut luar]] <math>\theta_1,\theta_2,\dots,\theta_n</math>, dari
Baris 72:
Rumus ini dijelaskan oleh Lopshits pada tahun 1963.<ref name="lopshits">{{cite book|author=A.M. Lopshits|year=1963|title=Computation of areas of oriented figures|publisher=D C Heath and Company: Boston, MA|url-status=live}}</ref>
 
Jika poligon dapat digambarkan di sebuah kisi yang berjarak sama, sehingga semua titik pojoksudut adalah titik kisi, maka [[teorema Pick]] memberikan rumus sederhana untuk luas poligon berdasarkan jumlah titik kisi di dalam maupun di batas poligon, yang mengatakan: luas poligon sama dengan jumlah titik bilangan bulat di dalam poligon ditambah dengan setengah dari jumlah titik bilangan bulat di batas poligon, yang kemudian dikurangi 1.
 
Setiap poligon dengan keliling <math>p</math> dan luas <math>A</math>'','' berlaku [[pertidaksamaan isoperimetrik]] <math>p^2 > 4\pi A</math>.<ref>[http://forumgeom.fau.edu/FG2002volume2/FG200215.pdf Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", ''Forum Mathematicorum'' 2, 2002, 129–130.]</ref>
Baris 85:
 
=== Pusat massa ===
Dengan menggunakan konvensi yang sama untuk koordinat titik pojoksudut seperti di bagian sebelumnya, koordinat dari pusat massa dari poligon sederhana padat dirumuskan sebagai
 
<math display="block">C_x = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (x_i + x_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i), </math><math display="block">C_y = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (y_i + y_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i).</math>
Baris 94:
== Perumuman ==
Gagasan dari poligon diperumum melalui berbagai cara. Ada beberapa perumuman dari poligon yang lebih penting, di antaranya:
* [[Poligon bola]] adalah poligon yang mempunyai sirkuit dari busur lingkaran besar (yakni, sisi) dan titik pojoksudut pada permukaan bola. Hal ini memungkinkan [[digon]], poligon yang hanya memiliki dua sisi dan dua titik pojoksudut, yang tidak mungkin dilakukan pada bidang datar. Poligon bola memainkan peran penting dalam [[kartografi]] (pembuatan peta) dan dalam [[konstruksi Wythoff]] dari [[polihedron seragam]].
* [[Poligon pencong]] tidak terletak di bidang datar, melainkan di garis zigzag dalam dimensi tiga atau lebih. [[Poligon Petrie]] dari politop beraturan adalah contoh yang terkenal.
* [[Apeirogon]] adalah sebuah poligon yang mempunyai barisan tak hingga dari sisi dan sudut. Barisan tersebut tidak tertutup tetapi tidak punyai titik akhir, sebab barisan tersebut secara tak langsung memperluas ke dua arah.
* [[Apeirogon pencong]] adalah sebuah poligon yang mempunyai barisan tak hingga dari sisi dan sudut yang tidak terletak di sebuah bidang datar.
* [[Politop kompleks|Poligon kompleks]] adalah sebuah [[konfigurasi (politop)|konfigurasi]] yang mirip seperti poligon biasa. Yang membedakannya adalah poligon ini berada di [[bidang kompleks]] dari dua dimensi [[bilangan real]] dan dua dimensi [[bilangan imajiner]].
* [[Politop abstrak|Poligon abstrak]] adalah [[himpunan terurut parsial]] aljabar yang mewakili berbagai elemen (seperti sisi, titik pojoksudut, dsb.) serta keterhubungannya. Sebuah poligon geometri real dikatakan sebagai ''realisasi'' dari poligon abstrak iring.
* [[Polihedron]] adalah benda padat dimensi tiga yang dibatasi oleh muka poligonal datar, mirip seperti poligon dalam dimensi dua yang dibatasi oleh sisi, Bentuk yang korespondensi dalam dimensi empat atau lebih disebut sebagai [[politop]].<ref>Coxeter (3rd Ed 1973)</ref>