Mikrometer: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k v2.04b - Fixed using Wikipedia:ProyekWiki Cek Wikipedia (Tanda baca setelah kode "<nowiki></ref></nowiki>") |
k pembersihan kosmetika dasar, removed stub tag |
||
(3 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 1:
{{about|alat ukur|satuan panjang|Mikrometer (satuan)}}
[[Berkas:Mahr Micromar 40A 0–25 mm Micrometer.jpg|jmpl|Mikrometer sekrup modern dengan pembacaan 1,640 <math>\pm</math> 0,005 mm. Dengan asumsi tidak ada [[kesalahan titik nol]].]]
'''Mikrometer''' atau biasa disebut mikrometer [[sekrup]] adalah alat yang digunakan untuk mengukur benda-benda berukuran kecil/tipis, atau yang berbentuk pelat dengan tingkat [[Akurasi dan presisi|presisi]] yang cukup tinggi. Mikrometer sekrup memiliki ketelitian 0,01
Mikrometer juga digunakan di dalam teleskop dan mikroskop yang masing-masing kegunaannya ialah mengukur diameter semu benda langit dan diameter benda mikroskopis.<ref name=":1">{{Cite journal|last=Schmid|first=Rudolf|last2=Hopkins|first2=D. J.|last3=Merriam-Webster|date=1998-05|title=Merriam-Webster's Geographical Dictionary|url=https://www.merriam-webster.com/dictionary/micrometer|journal=Taxon|volume=47|issue=2|pages=535|doi=10.2307/1223820|issn=0040-0262}}</ref> Mikrometer yang digunakan dengan teleskop ditemukan sekitar tahun 1638 oleh [[William Gascoigne]], seorang astronom Inggris.<ref>{{Cite book|last=|first=Mitutoyo|date=2008|url=https://www.mitutoyo.co.jp/eng/pdf/R257_Micro.pdf|title=A Brief History of Micrometer|location=Singapore|publisher=Mitutoyo Asia Pasific|isbn=|pages=5|url-status=live}}</ref>
Objek/target [[biologi]] yang diamati dengan [[mikroskop]] mempunyai ukuran/dimensi [[micron]] (μ). Untuk pengukuran (panjang, lebar, diameter) suatu objek [[mikroskopis]] digunakan mikrometer okuler. Mikrometer okuler berbentuk bulat pipih, di tengahnya terdapat skala ‘menyerupai’ penggaris berangka 0, 10, 20,.., 100. Mikrometer okuler digunakan dengan cara diinsersikan pada [[lensa okuler]]. Skala pada mikrometer okuler ditentukan nilai satuan panjangnya menggunakan mikrometer obyektif. Cara ini dinamakan [[kalibrasi]].
Baris 9:
Pengukuran melalui mikrometer meliputi mengukur ukuran sel, maupun diameter bidang pandang lensa obyektif. Manfaat ataupun relevansi dari mikrometri yaitu dapat diketahui jumlah sel pada setiap luas atau bidang pandang dapat digunakan untuk mengetahui konsentrasi sel dalam suatu [[sampel]]. Penggunaan mikrometer dapat membantu pengukuran struktur dalam yang sediaannya sudah disiapkan <ref>Ajeng, Suryana. 2006. ''Mikroteknik''. Bandung : Alfabeta.</ref>
Mikrometer obyektif berbentuk ''slide glass'', di tengahnya terdapat skala tanpa angka sebanyak 100 unit, seperti penggaris. Skala tersebut ditutup dengan cover slip berbentuk bulat. Skala 100 unit = 1 mm maka tiap unit setara dengan 0.01 mm atau 10 μm maka jarak tiap unit dari micrometer obyektif akan tampak berbeda <ref>{{Cite web|url=http://retnomastutibiologi.lecture.ub.ac.id/files/2014/09/Modul-PraktikumBiologi-Umum-20141.pdf|title=Penuntun Praktikum Biologi Umum|last=|first=Sumitro|date=2014|website=|access-date=}}</ref>
[[Berkas:Micrometers.jpg|jmpl|190px]]
Baris 26:
== Sejarah alat dan pemberian nama ==
[[Berkas:Gascoigne's micrometer as drawn by Robert Hooke.JPG|jmpl|Mikrometer Gascoigne, digambar oleh [[Robert Hooke]]]]
Kata mikrometer berasal dari kata [[neoklasik]] yang berarti ''micros'' dari [[Yunani]], artinya "kecil", dan ''metron,'' artinya "ukuran". The ''Merriam-Webster Collegiate Dictionary'' <ref name=":1" /> mengatakan bahwa mikrometer dalam bahasa Inggris diserap dari bahasa Prancis dan kemunculannya pertama kali diketahui dalam tulisan berbahasa Inggris pada tahun 1670. Baik [[meter]], [[Mikrometer (satuan)|mikrometer]] (μm), dan mikrometer (perangkat/alat) seperti yang kita kenal sekarang, tidak ada pada waktu itu. Akan tetapi, orang-orang pada masa itu mempunyai
Mikrometer sekrup pertama kali ditemukan oleh William Gascoigne pada abad ke-17, sebagai penyempurnaan dari [[skala vernier]]; digunakan dalam teleskop untuk mengukur jarak sudut antara bintang dan ukuran relatif benda langit.
[[Henry Maudslay]] membangun sebuah mikrometer bangku di awal abad ke-19 yang secara bercanda dijuluki "Lord Chancellor" oleh para stafnya merujuk kepada kemampuan alat dalam memberikan keputusan akhir pada [[akurasi dan presisi]] pengukuran dalam pekerjaan perusahaan. Pada tahun 1844, rincian mikrometer bengkel [[Whitworth]] diterbitkan.<ref>"[https://collection.sciencemuseumgroup.org.uk/objects/co59326/micrometer-type-mechanical-comparator-comparator Whitworth's workshop micrometer]", The Practical Mechanic and Engineer's magazine, Nov 1844, Hal 43-44</ref> Digambarkan memiliki rangka yang kuat dari besi, ujung yang berlawanan adalah dua silinder baja dengan finishing yang sangat baik, yang dihubungkan secara melingkar dengan sekrup. Ujung silinder tempat mereka bertemu berbentuk setengah bola. Satu sekrup dipasang dengan roda yang dapat
Dokumentasi pertama
Budaya dalam membuat alat-alat dan perkakas bengkel menjadi akurasi dan presisi, dipelopori oleh pelopor perkakas seperti [[Gribeauval]], [[Tousard]], [[North]], [[Hall]], [[Whitney]], dan [[Colt’s Manufacturing Company|Colt]], dan berlanjut melalui para pemimpin seperti Maudslay, Palmer, Whitworth, Brown, Sharpe, Pratt, Whitney, Leland, dan yang lainnya, melalui
== Prinsip kerja dan cara penggunaan ==
[[Berkas:Micrometer no zero error.gif|jmpl|Animasi dari penggunaan mikrometer. Objek yang diukur berwarna hitam. hasil pengukurannya adalah 4.140 ± 0.005 mm.]]Karena [[Mekanika teknik|keuntungan mekanis]] yang disebabkan oleh laras halus pada ulir sekrup yang menggerakkan bidal dan batang pengukur di sebelah kanan, membuat sekrup mudah diputar dan dapat menutupi objek yang diukur secara tepat.<ref>{{Cite web|last=Harrison|first=David M.|date=Agustus 2002|title=Micrometer|url=https://faraday.physics.utoronto.ca/PVB/Harrison/Micrometer/Micrometer.html|website=faraday.physics.utoronto.ca|access-date=2020-10-01}}</ref> Sehingga membuat objek yang diukur menjadi lebih akurat dan presisi.
Secara umum, mikrometer sekrup mempunyai dua jenis skala. Skala pertama tertera pada gagang utama mikrometer yang merupakan [[skala tetap]]. Skala jenis kedua adalah [[skala putar]] yang terletak pada silinder yang dapat diputar. Hasil pengukuran dapat diketahui dengan
* Tentukan pembacaan skala tetap yang dibatasi oleh skala putar. Jika tidak tepat berhimpit, gunakan pembacaan skala terdekat yang lebih kecil. Misalkan, pembacaan skala tetap yang dibatasi oleh skala putar lebih dari 8 tetapi belum tepat 9. Besarnya pengukuran yang digunakan adalah 8
* Cari angka pada skala putar yang sejajar dengan garis mendatar pada skala tetap. Misalkan, garis 43 pada skala putar sejajar dengan garis mendatar pada skala tetap. Besarnya hasil pengukuran yang diperoleh adalah 43 kali skala putar (43 x 0,01 = 0,43
* Jumlahkan kedua hasil pengukuran. Kita peroleh panjang benda yang dimaksud adalah (8 + 0,43) mm = 8,43
== Cara mengkalibrasi mikrometer sekrup ==
Karena terkadang ketepatan mikrometer sekrup akan berupah setelah dipakai berkali-kali maka diperlukan kalibrasi 0 pada mikrometer sekrup, hal ini agar mikrometer sekrup tetap akurat dalam menghasilkan pengukuran. Di bawah ini cara mengalibrasi mikrometer sekrup :
* Letakan dan himpit batang penyetel mikrometer sekrup di antara anvil dan spindle, himput batang penyetel mikrometer sekrup dengan memutar thimble secukupnya.
* Jika batang penyetel mikrometer sekrup sudah sedikit terhimpit maka kencangkan lagi himpitan anvil dan spindle terhadap batang penyetel dengan memutar rachet knob hingga spindle tidak bergerak.
* Jika selisih antara angka 0 dan garis tengah pada sekala tetap dengan sekala putar tidak melebihi 0,02 mm maka putarlah sleeve menggunakan kunci penyetel hingga garis tengah dan angka 0 sejajar dengan 0 pada sekala putar.
* Jika selisih antara 0 dengan garis tengah pada sekala tetap lebih dari 0,02 mm, maka lepas rachet knob kemudian tahan sleeve dan putar thimble menggunakan kunci penyetel hingga didapatkan angka 0 pada sekala putar dengan garis tengah pada sekala tetap sejajar, jika sudah pasang kembali rachet knob.
== Bagian-bagian mikrometer sekrup ==
Baris 55 ⟶ 63:
=== Spindle / Poros gerak ===
''Spindle'' adalah batang berbentuk lebih panjang yang posisinya ada pada ujung frame lainnya. Jadi, sekilas spindle dan anvil itu memiliki bentuk yang mirip. Namun anvil lebih kecil dan bersifat tetap, sementara spindle lebih panjang dan dapat digeser. Fungsi spindle adalah sebagai penjepit benda kerja yang akan diukur, setelah benda kerja
=== Sleeve ===
Baris 61 ⟶ 69:
=== Thimble ===
Thimble adalah batang logam berbentuk tabung yang terletak dibagian luar sleeve, fungsi thimble adalah untuk meletakan skala nonius. Thimble dapat diputar, dan setiap putaran thimble akan
=== Lock nut / Pengunci ===
Baris 70 ⟶ 78:
Untuk memastikan ujung Spindle telah menempel sempurna dengan benda yang akan diukur, maka Ratchet knob diputar sebanyak 2 sampai 3 kali putaran.
== Lihat pula ==
Baris 79 ⟶ 86:
<references />
== Pranala luar ==
# [https://www.ommobil.com/2022/07/cara-mengkalibrasi-mikrometer-sekrup.html Cara mengkalibrasi mikrometer sekrup]
{{Authority control}}
|