Leonhard Euler: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
JohnThorne (bicara | kontrib) |
Menghapus Euler_GDR_stamp.jpg karena telah dihapus dari Commons oleh Rosenzweig; alasan: per c:Commons:Deletion requests/Files in Category:Stamps by Axel Bengs. Tag: |
||
(25 revisi perantara oleh 8 pengguna tidak ditampilkan) | |||
Baris 19:
|known_for = [[Daftar hal-hal yang dinamai menurut Leonhard Euler|Lihat daftar]]
|prizes =
|religion = [[Calvinisme|Calvinis]]<ref>{{cite book|title=Scientists of Faith|url=https://archive.org/details/scientistsoffait00grav|author=Dan Graves|location=Grand Rapids, MI|year=1996|publisher=Kregel Resources|pages=
|footnotes = Dia adalah ayah matematikawan
|signature = Euler's signature.svg
}}
'''Leonhard Euler''' ({{IPA-all|ˈɔɪleːʀ|Pengucapan Jerman Swiss:|LeonhardEulerByDrsDotChRadio.ogg}}, {{IPA-all|ˈɔʏlɐ|Standar Jerman:|De-Leonard_Euler.ogg}}, {{IPA-all|ˈɔɪlɹ̩|Inggris:}}<small>, mirip dengan 'oiler'</small>;<ref>Cara pengucapan {{IPA-all|ˈjuːlər|}} tidaklah benar. "Euler", [[Oxford English Dictionary]], edisi kedua, Oxford University Press, 1989 [http://www.merriam-webster.com/dictionary/Euler "Euler"], [[:en:Webster's Dictionary|Merriam–Webster's Online Dictionary]], 2009. [http://ahdictionary.com/word/search.html?q=Euler%2C+Leonhard&submit.x=40&submit.y=16 "Euler, Leonhard"], [[The American Heritage Dictionary of the English Language]], edisi keempat, Houghton Mifflin Company, Boston, 2000. {{cite book|title=Nets, Puzzles, and Postmen: An Exploration of Mathematical Connections|url=https://archive.org/details/netspuzzlespostm00higg|author=Peter M. Higgins|year=2007|publisher=Oxford University Press|page=[https://archive.org/details/netspuzzlespostm00higg/page/n51 43]}}</ref>
15 April 1707{{spaced ndash}}18 September 1783) adalah seorang [[matematikawan]] dan [[fisikawan]] pionir dari [[Swiss]]. Dia membuat penemuan-penemuan penting dalam bidang yang beragam seperti [[kalkulus]] dan [[teori graf]]. Dia juga mengenalkan banyak notasi dan terminologi matematika modern, terutama untuk [[analisis matematika]], seperti konsep [[Fungsi (matematika)|fungsi matematika]].<ref name="function">{{harvnb|Dunham|1999|p=17}}</ref> Dia juga dikenal melalui karyanya dalam [[mekanika]], [[dinamika fluida]], [[optik]], dan [[astronomi]]. Euler menghabiskan masa dewasanya di [[St. Petersburg]], [[Kekaisaran Rusia|Rusia]], dan di [[Berlin]], [[Kerajaan Prusia|Prusia]]. Ia dianggap sebagai matematikawan unggulan abad ke-18, dan salah satu matematikawan terhebat yang pernah ada. Dia juga merupakan salah satu matematikawan paling produktif; hasil karyanya termuat dalam 60–80 jilid kuarto.<ref name="volumes">{{cite journal|last = Finkel|first = B.F.|year = 1897|title = Biography- Leonard Euler|journal = The American Mathematical Monthly| volume = 4| issue = 12<!--| page = 300 -->|jstor = 2968971|pages = 297–302}}</ref> Sebuah ungkapan dari [[Pierre-Simon Laplace]] memperlihatkan pengaruh Euler dalam matematika: "Baca Euler, baca Euler, dia adalah master dari kita semua."<ref name="Laplace">{{harvnb|Dunham|1999|p=xiii}} "Lisez Euler, lisez Euler, c'est notre maître à tous."</ref>
Baris 32:
Euler lahir di [[Basel]], 15 April 1707. Ayahnya adalah Paul Euler, seorang [[pastor|pastur]] [[Calvinisme]]. Ibunya adalah Marguerite Brucker, anak dari seorang pastur. Dia memiliki dua adik perempuan Anna Maria dan Maria Magdalena. Segera setelah kelahiran Leonhard, keluarga Euler pindah dari Basel menuju Riehen, tempat dia menjalani masa kanak-kanaknya. Paul Euler merupakan teman dari salah seorang anggota keluarga Bernoulli—[[Johann Bernoulli]], yang dianggap sebagai matematikawan Eropa terkemuka, yang nantinya menjadi pengaruh penting terhadap Leonhard muda.
Pendidikan formal Euler berawal di Basel. Di sana dia tinggal bersama nenek dari pihak ibunya. Di usianya yang ketigabelas, dia mendaftar di [[Universitas Basel]], dan pada tahun 1723 pada usia 16 tahun, dia menerima gelar ‘’Master of Philosophy’’ dengan disertasi yang membandingkan filsafat dari [[René Descartes|Descartes]] dan [[Isaac Newton|Newton]]. Setelah kelulusannya, dia mengambil les Sabtu sore dari Johann Bernoulli, yang dengan cepat menemukan bakat luar biasa dari murid barunya itu dalam matematika.<ref name="childhood">{{cite book|last= James|first= Ioan|title= Remarkable Mathematicians: From Euler to von Neumann|publisher= Cambridge|year= 2002|page=2|isbn= 0-521-52094-0}}</ref> Dari sini, Euler mempelajari [[teologi]], [[bahasa Yunani]], dan [[bahasa Ibrani]] karena desakan ayahnya, agar ia menjadi seorang pastor, tetapi Bernoulli meyakinkan Paul Euler bahwa Leonhard telah ditakdirkan untuk menjadi seorang matematikawan hebat. Pada tahun 1726, Euler merampungkan disertasi tentang [[Kecepatan suara|perambatan suara]] dengan judul ''De Sono''.<ref>[http://www.17centurymaths.com/contents/euler/e002tr.pdf Euler's Dissertation De Sono
Pada tahun 1727, dia mengikuti kompetisi ''Paris Academy Prize Problem'' (kompetisi memecahkan masalah), yang pada saat itu tantangannya adalah menemukan cara terbaik untuk menempatkan tiang kapal pada sebuah perahu. Dia mendapat juara kedua, kalah dari [[:en:Pierre Bouguer|Pierre Bouguer]]—yang sekarang dikenal sebagai "Bapa arsitekur angkatan laut." Euler kemudian memenangkan kompetisi tahunan yang didambakan ini dua belas kali sepanjang kariernya.<ref name="prizes">{{harvnb|Calinger|1996|p=156}}</ref>
Baris 39:
Sebelumnya, kedua anak Johan Bernoulli, [[Daniel Bernoulli|Daniel]] dan [[:en:Nicolaus II Bernoulli|Nicolaus]], tengah bekerja di [[Akademi Ilmu Pengetahuan Rusia|Akademi Ilmu Pengetahuan Imperial Rusia]] di [[St Petersburg]]. Kemudian pada 10 Juli 1726, Nicolaus meninggal akibat [[apendisitis]] yang telah menjangkitinya selama satu tahun di Rusia, dan saat Daniel harus mengisi posisi saudaranya di divisi matematika/fisika, dia menyarankan bahwa salah satu bagian di bidang fisiologi yang kosong ditempati oleh temannya, Euler. Pada November 1726, Euler menerima tawaran itu dengan senang hati, tetapi dia menunda kepergiannya menuju St Petersburg karena dia telah mengajukan lamaran untuk menjadi dosen fisika di Universitas Basel, yang sayangnya tidak diberikan kepadanya.<ref name="stpetersburg">{{harvnb|Calinger|1996|p=125}}</ref>
[[Berkas:Euler-USSR-1957
Euler tiba di [[St Petersburg|
Akademi di St. Petersburg itu, yang didirikan oleh raja [[Pyotr I dari Rusia|Peter I]], memiliki visi memajukan pendidikan di Rusia dan menghilangkan kesenjangan ilmiah dengan dunia barat. Hasilnya, akademi tersebut secara khusus menjadi perhatian para sarjana asing seperti Euler. Akademi tersebut memiliki sumber daya keuangan yang mencukupi dan sebuah perpustakaan yang lengkap yang meniru perpustakan pribadi Peter dan juga seperti perpustakaan peribadi milik kaum bangsawan lain. Hanya beberapa murid yang mendaftar di akademi tersebut untuk menjadi pengajar di fakultas yang ada, dan akademi tersebut menekankan terhadap pengadaan riset dan memberikan waktu dan kebebasan kepada fakultas-fakultasnya untuk mengikuti berbagai pertanyaan ilmiah.<ref name="prize">{{harvnb|Calinger|1996|p=124}}</ref>
Baris 49:
Pada tanggal 7 Januari 1734, dia menikahi Katharina Gsell (1707-1773), putri dari [[:en:Georg Gsell|Georg Gsell]], seorang pelukis pada ''Academy Gymnasium''.<ref>{{Cite book|first1=I.R.|last1=Gekker|first2=A.A.|last2=Euler|chapter=Leonhard Euler's family and descendants|chapterurl=http://books.google.com/books?id=Ta9bz1wv79AC&pg=PA402|title={{harvnb|Bogoli︠u︡bov|Mikhaĭlov|I︠U︡shkevich|2007|page=402}}|ref={{harvid|Gekker|Euler|2007}}}}</ref> Pasangan muda ini membeli rumah dekat [[Sungai Neva]]. Dari ketigabelas anak mereka, hanya lima anak yang berhasil hidup melampaui masa kanak-kanak.<ref name="wife">{{cite web| url=http://www-history.mcs.st-and.ac.uk/~history/Extras/Euler_Fuss_Eulogy.html| title = Eulogy of Euler by Fuss| accessdate =30 August 2006| last = Fuss| first = Nicolas}}</ref>
=== Berlin ===
Karena kerusuhan terus menerus di Rusia, Euler meninggalkan St. Petersburg pada tanggal 19 Juni 1741 untuk menduduki jabatan pada ''[[Akademi Sains Prusia|Akademi Berlin]]'', yang ditawarkan kepadanya oleh [[Friedrich II dari Prusia]]. Ia tinggal 25 tahun di [[Berlin]], di mana ia menulis lebih dari 380 articles. Di Berlin, ia menerbitkan dua karya yang membuatnya sangat terkenal: ''[[:en:Introductio in analysin infinitorum|Introductio in analysin infinitorum]]'', suatu teks mengenai fungsi-fungsi matematika diterbitkan pada tahun 1748, dan ''[[:en:Institutiones calculi differentialis|Institutiones calculi differentialis]]'',<ref name=dartm/> diterbitkan pada tahun 1755 mengenai [[kalkulus diferensial]].<ref name="Friedrich"/> Pada tahun 1755, ia diangkat sebagai anggota orang asing (bukan orang Swedia) pada [[Akademi Ilmu Pengetahuan Kerajaan Swedia]]
Lebih lanjut, Euler diminta untuk menjadi tutor bagi [[:en:Friederike Charlotte of Brandenburg-Schwedt|Friederike Charlotte dari Brandenburg-Schwedt]], putri bangsawan [[:en:Anhalt-Dessau|Anhalt-Dessau]], yang adalah keponakan perempuan Frederick. Euler menulis lebih dari 200 surat kepadanya pada awal tahun 1760-an, yang kemudian dikumpulkan menjadi suatu volume terlaris berjudul ''[[:en:Letters to a German Princess|Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess]]''.<ref name='Digital Copy of "Letters to a German Princess"'/> Karya ini memuat penjelasan Euler mengenai berbagai topik fisika dan matematika, selain juga pandangan berharga mengenai kepribadian dan kepercayaan agama Euler. Buku ini menjadi lebih banyak dibaca daripada karya-karya matematikanya, dan diterbitkan di seluruh Eropa dan Amerika Serikat. Kepopuleran buku ini membuktikan kemampuan Euler untuk menyampaikan hal-hal ilmiah secara efektif bagi orang awam, suatu kemampuan yang jarang ditemukan pada ilmuwan-ilmuwan peneliti yang berdedikasi.<ref name="Friedrich"/>
Meskipun Euler banyak berkontribusi bagi prestasi Akademi Berlin, ia akhirnya tidak disukai oleh [[Friedrich II dari Prusia|Friedrich]] dan harus meninggalkan Berlin untuk kembali ke St. Petersburg.
[[Berkas:Leonhard Euler.jpg|jmpl|Lukisan portret Euler pada tahun 1753 karya [[:en:Emanuel Handmann|Emanuel Handmann]], menunjukkan masalah pada mata kanan Euler, kemungkinan [[:en:strabismus|strabismus]]. Mata kiri Euler yang saat itu tampak sehat kemudian terkena [[katarak]].<ref name="blind"/>]]
=== Penyakit mata ===
[[Penglihatan]] Euler terus memburuk sepanjang karier matematikanya. Pada tahun 1738, tiga tahun setelah hampir mati akibat demam tinggi, mata kanannya terkena infeksi dan hampir sama sekali buta. Selama tinggal di Jerman, ia hanya bisa melihat dengan mata kiri. Tidak berapa lama setelah tiba di St. Petersburg, mata kirinya terkena [[katarak]] pada tahun 1766. Hanya beberapa minggu setelahnya, ia menjadi buta total. Namun, produktivitasnya malah meningkat berkat ingatannya yang luar biasa. Euler berkata, "Sekarang perhatianku lebih sedikit gangguannya".<ref>[https://books.google.ca/books?id=KUYLhOVkaV4C&pg=PA17&lpg=PA17&dq=%22now+i+will+have+fewer+distractions%22&source=bl&ots=cELiNguUQ9&sig=vGQmYpZ7EUbtpOyh8CIb3uDCgh8&hl=en&sa=X&ved=0ahUKEwiX6c_V7KLSAhWH6YMKHabkCbYQ6AEILjAE#v=onepage&q=%22now%20i%20will%20have%20fewer%20distractions%22&f=false]</ref> Dalam keadaan buta, Euler dapat mengatakan isi ''[[Aeneid]]'' karya [[Virgil]] dari awal sampai akhir tanpa ragu-ragu, dan untuk setiap halaman edisi itu ia dapat menunjukkan baris pertama dan baris terakhir. Dengan bantuan seorang juru tulis, ia semakin banyak berkarya dalam berbagai bidang ilmu. Rata-rata ia menerbitkan satu artikel matematika setiap minggu pada tahun 1775.<ref name="volumes"/><!--The Eulers bore a double name, Euler-Schölpi, the latter of which derives from ''schelb'' and ''schief'', signifying squint-eyed, cross-eyed, or crooked. This suggests that the Eulers may have had a susceptibility to eye problems.<ref>{{cite book |last=Calinger |first=Ronald |date=2016 |title=Leonhard Euler mathematical genius in the Enlightenment |url=http://press.princeton.edu/titles/10531.html |location= |publisher=Princeton University Press |page=8 |isbn=9781400866632 }}</ref>
-->
Baris 69 ⟶ 65:
Pada tahun 1782 ia diangkat sebagai ''Foreign Honorary Member'' pada [[American Academy of Arts and Sciences]].<ref name=AAAS/>
Di St. Petersburg pada tanggal 18 September 1783, setelah makan siang dengan keluarganya, Euler berdiskusi mengenai planet [[Uranus]] yang baru ditemukan dan [[orbit]]-nya bersama dengan rekan [[akademikus]] [[:en:Anders Johan Lexell|Anders Johan Lexell]], ketika ia tiba-tiba pingsan akibat [[Hemorrhagia cerebral|pendarahan otak]]. Ia meninggal beberapa jam kemudian.<ref name="euler"/> [[:de:Jacob von Staehlin|Jacob von Staehlin-Storcksburg]] menulis suatu obituari singkat untuk [[Akademi Ilmu Pengetahuan Rusia]] dan [[matematikawan]] Rusia [[:en:Nicolas Fuss|Nicolas Fuss]], salah satu murid Euler, menulis eulogi yang lebih detail,<ref name=novaacta/> yang dibacakannya pada upacara pengenangan. Dalam eulogi bagi ''French Academy'', matematikawan dan filsuf
{{quote|''il cessa de calculer et de vivre''—... ia berhenti berhitung dan hidup.<ref name=condorcet/>}}
Baris 78 ⟶ 74:
<!--
{{E (mathematical constant)}}-->
Euler berkarya dalam hampir semua bidang [[matematika]], seperti [[geometri]], [[kalkulus]] [[:en:infinitesimal|infinitesimal]], [[trigonometri]], [[aljabar]], dan [[:en:number theory|teori bilangan]], selain juga [[Mekanika kontinuum|fisika kontinuum]], [[:en:lunar theory|teori lunar]] dan bidang-bidang [[fisika]] lainnya. Ia merupakan tokoh utama dalam sejarah matematika; jika dicetak, karya-karyanya, kebanyakan pada landasan ilmu, akan menjadi 60 sampai 80 volume [[:en:quarto (text)|quarto]].<ref name="volumes"/> Nama Euler juga terkait dengan [[Daftar hal-hal yang dinamai menurut Leonhard Euler|banyak topik]].
Euler adalah satu-satunya matematikawan yang mempunyai ''dua'' bilangan dengan namanya: [[
<!-- The biography could use more correlation with his mathematical activities. When was his most prolific period and discoveries, and how did they fit in with his general life? -->
=== Notasi matematika ===
Euler memperkenalkan dan mempopulerkan sejumlah konvensi notasi matematika melalui buku-buku teksnya yang berjumlah sangat banyak dan tersebar luas. Terutama, ia memperkenalkan konsep [[
<!--
===
The development of [[infinitesimal calculus]] was at the forefront of 18th-century mathematical research, and the [[Bernoulli family|Bernoullis]]—family friends of Euler—were responsible for much of the early progress in the field. Thanks to their influence, studying calculus became the major focus of Euler's work. While some of Euler's proofs are not acceptable by modern standards of [[mathematical rigor|mathematical rigour]]<ref name = "Basel"/> (in particular his reliance on the principle of the [[generality of algebra]]), his ideas led to many great advances.
Euler is well known in [[Mathematical analysis|analysis]] for his frequent use and development of [[power series]], the expression of functions as sums of infinitely many terms, such as
Baris 120 ⟶ 116:
By 1772 Euler had proved that 2<sup>31</sup> − 1 = [[2147483647|2,147,483,647]] is a Mersenne prime. It may have remained the [[largest known prime]] until 1867.<ref name=caldwell/>
===
[[Image:Konigsberg bridges.png|frame|right|Map of [[Königsberg]] in Euler's time showing the actual layout of the [[Seven Bridges of Königsberg|seven bridges]], highlighting the river Pregel and the bridges.]]
In 1735, Euler presented a solution to the problem known as the [[Seven Bridges of Königsberg]].<ref name="bridge"/> The city of [[Königsberg]], [[Kingdom of Prussia|Prussia]] was set on the [[Pregel]] River, and included two large islands that were connected to each other and the mainland by seven bridges. The problem is to decide whether it is possible to follow a path that crosses each bridge exactly once and returns to the starting point. It is not possible: there is no [[Eulerian path|Eulerian circuit]]. This solution is considered to be the first theorem of [[graph theory]], specifically of [[planar graph]] theory.<ref name="bridge"/>
Baris 151 ⟶ 147:
</math>
di mana
* ''ρ'' is the fluid [[mass density]],
* '''''u''''' is the fluid [[velocity]] [[Vector (geometric)|vector]], with components ''u'', ''v'', and ''w'',
Baris 162 ⟶ 158:
:<math>F=\frac{\pi^2 EI}{(KL)^2}</math>
di mana
* ''F'' = maximum or critical [[force]] (vertical load on column),
* ''E'' = [[modulus of elasticity]],
Baris 177 ⟶ 173:
=== Logika ===
Euler juga dikenang dengan hasil karyanya berupa [[Kurva|kurva tertutup]] untuk menggambarkan pemikiran [[silogisme]] (1768). Diagram ini telah dikenal dengan nama [[:en:Euler diagram|diagram Euler]].<ref name="logic">{{cite journal |last=Baron |first=M. E. |title=A Note on The Historical Development of Logic Diagrams |journal=The Mathematical Gazette |volume=LIII |issue=383 |pages=113–125 |date=May 1969 |jstor=3614533}}</ref>
<!--
An Euler diagram is a [[diagram]]matic means of representing [[Set (mathematics)|sets]] and their relationships. Euler diagrams consist of simple closed curves (usually circles) in the plane that depict [[Set (mathematics)|sets]]. Each Euler curve divides the plane into two regions or "zones": the interior, which symbolically represents the [[element (mathematics)|elements]] of the set, and the exterior, which represents all elements that are not members of the set. The sizes or shapes of the curves are not important; the significance of the diagram is in how they overlap. The spatial relationships between the regions bounded by each curve (overlap, containment or neither) corresponds to set-theoretic relationships ([[intersection (set theory)|intersection]], [[subset]] and [[Disjoint sets|disjointness]]). Curves whose interior zones do not intersect represent [[disjoint sets]]. Two curves whose interior zones intersect represent sets that have common elements; the zone inside both curves represents the set of elements common to both sets (the [[intersection (set theory)|intersection]] of the sets). A curve that is contained completely within the interior zone of another represents a [[subset]] of it. Euler diagrams were incorporated as part of instruction in [[set theory]] as part of the [[new math]] movement in the 1960s. Since then, they have also been adopted by other curriculum fields such as reading.<ref name=quest/>
Baris 195 ⟶ 189:
where ''p<sub>i</sub>'' are prime numbers and ''k<sub>i</sub>'' their exponents.<ref>Patrice Bailhache, "La Musique traduite en Mathématiques: Leonhard Euler", http://patrice.bailhache.free.fr/thmusique/euler.html, retrieved 12-6-2015.</ref>
-->
== Filsafat dan Kepercayaan ==
Euler dan temannya [[Daniel Bernoulli]] bertolak belakang dengan [[:en:monadism|monadisme]] [[Gottfried Leibniz|Leibniz]] dan filosofi [[Christian Wolff]]. Euler bersikeras bahwa pengetahuan didirikan atas dasar hukum kuantitatif yang tepat, hal yang tidak dapat dijelaskan oleh monadisme dan ilmu pengetahuan Wolffian. Kecenderungan religius Euler mungkin juga menjadi alasan ketidaksukaannya terhadap doktrin; dia bertindak lebih jauh dan menyebut ideologi Wolff sebagai "kafir dan ateis".<ref name="wolff">{{harvnb|Calinger|1996|pp=153–4}}</ref>
Keyakinan agama Euler bisa dilihat dari suratnya kepada seorang Putri Jerman dan karyanya sebelumnya, ''Rettung der Göttlichen Offenbahrung Gegen die Einwürfe der Freygeister'' (''Mempertahankan Wahyu Ilahi terhadap Keberatan Para [[Pemikiran bebas|Pemikir Bebas]]''). Karya-karya inilah yang menunjukkan bahwa Euler adalah seorang penganut [[Kristen]] taat yang percaya akan ilham [[Alkitab|Injil]]; ''Rettung'' semula adalah argumen untuk [[Ilham Alkitab|ilham kitab suci Ilahi]].<ref name="teologi"/>
Ada satu legenda yang terkenal,<ref name="diderot">{{cite journal| last = Brown | first = B.H.| year = 1942| month = May| title = The Euler-Diderot Anecdote| journal =The American Mathematical Monthly| volume = 49| issue = 5| pages = 302–303| doi = 10.2307/2303096| jstor = 2303096}}; {{cite journal| last = Gillings | first = R. J.| year = 1954| month = February| title = The So-Called Euler-Diderot Incident| journal =The American Mathematical Monthly| volume = 61| issue = 2| pages = 77–80| doi = 10.2307/2307789| jstor = 2307789}}</ref> terinspirasi dari argumen-argumen antara Euler dengan para filsuf sekuler yang terjadi selama masa tugas kedua Euler di Akademi St. Petersburg. Filsuf
== Penghormatan ==
Baris 209 ⟶ 202:
== Referensi ==
{{Reflist|colwidth=30em
<!--<ref name=mathg>{{MathGenealogy|id=38586}}</ref>
<ref name=pronun>The pronunciation {{IPAc-en|ˈ|juː|l|ər}} is incorrect. "Euler", [[Oxford English Dictionary]], second edition, Oxford University Press, 1989 [http://www.merriam-webster.com/dictionary/Euler "Euler"], [[Webster's Dictionary|Merriam–Webster's Online Dictionary]], 2009. [http://ahdictionary.com/word/search.html?q=Euler%2C+Leonhard&submit.x=40&submit.y=16 "Euler, Leonhard"], [[The American Heritage Dictionary of the English Language]], fifth edition, Houghton Mifflin Company, Boston, 2011. {{cite book|title=Nets, Puzzles, and Postmen: An Exploration of Mathematical Connections|url=https://archive.org/details/netspuzzlespostm00higg|author=Peter M. Higgins|year=2007|publisher=Oxford University Press|page=[https://archive.org/details/netspuzzlespostm00higg/page/n51 43]}}</ref>
<ref name="function">{{harvnb|Dunham|1999|p=17}}</ref>
<ref name=eulerarch>{{cite web|url=http://eulerarchive.maa.org/pages/E033.html |author=Saint Petersburg |title=Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae |publisher= |date=1739 |accessdate= }}</ref>
<ref name="volumes">{{cite journal |last = Finkel |first = B. F. |year = 1897 |title = Biography—Leonard Euler |journal = The American Mathematical Monthly |volume = 4 | issue = 12 |jstor = 2968971|pages = 297–302|doi=10.2307/2968971 }}</ref>
<ref name="Laplace">{{harvnb|Dunham|1999|p=xiii}} "Lisez Euler, lisez Euler, c'est notre maître à tous."</ref>
<ref name=libri>The quote appeared in Gugliemo Libri's review of a recently published collection of correspondence among eighteenth-century mathematicians: Gugliemo Libri (January 1846), Book review: "Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIe siècle, … " (Mathematical and physical correspondence of some famous geometers of the eighteenth century, … ), ''Journal des Savants'', [http://gallica.bnf.fr/ark:/12148/bpt6k57253t/f52.image.langEN page 51.] From page 51: ''" … nous rappellerions que Laplace lui même, … ne cessait de répéter aux jeunes mathématiciens ces paroles mémorables que nous avons entendues de sa propre bouche : 'Lisez Euler, lisez Euler, c'est notre maître à tous.' "'' ( … we would recall that Laplace himself, … never ceased to repeat to young mathematicians these memorable words that we heard from his own mouth: 'Read Euler, read Euler, he is our master in everything.)</ref>
<ref name="childhood">{{cite book |last= James |first= Ioan |title= Remarkable Mathematicians: From Euler to von Neumann |publisher= Cambridge |year= 2002|page=2 |isbn= 0-521-52094-0}}</ref>
<ref name=17cent>{{cite web|url=http://www.17centurymaths.com/contents/euler/e002tr.pdf |author=Ian Bruce |title=Euler's Dissertation De Sono : E002. Translated & Annotated |publisher=17centurymaths.com |date= |accessdate=14 September 2011 }}</ref>
<ref name="prize">{{harvnb|Calinger|1996|p=156}}</ref>
<ref name="stpetersburg">{{harvnb|Calinger|1996|p=125}}</ref>
<ref name="medic">{{harvnb|Calinger|1996|p=127}}</ref>
<ref name="promotion">{{harvnb|Calinger|1996|pp=128–9}}</ref>
<ref name=gekker>{{Cite book | first1=I. R. | last1=Gekker | first2=A. A. | last2=Euler | chapter=Leonhard Euler's family and descendants |chapterurl=https://books.google.com/books?id=Ta9bz1wv79AC&pg=PA402 |title={{harvnb|Bogolyubov|Mikhaĭlov|Yushkevich|2007|page=402}} |ref={{harvid|Gekker|Euler|2007}}}}</ref>
-->
<ref name="wife">{{cite web| url=http://www-history.mcs.st-and.ac.uk/~history/Extras/Euler_Fuss_Eulogy.html| title = Eulogy of Euler by Fuss| accessdate =30 August 2006| last = Fuss| first = Nicolas}}</ref>
<ref name=dartm>{{cite web| title = E212 – Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum|publisher=Dartmouth|url=http://www.math.dartmouth.edu/~euler/pages/E212.html}}</ref>
<ref name="Friedrich">{{harvnb|Dunham|1999|pp=xxiv–xxv}}</ref>
<ref name='Digital Copy of "Letters to a German Princess"'>{{cite web|last=Euler|first=Leonhard|title=Letters to a German Princess on Diverse Subjects of Natural Philosophy|url=https://archive.org/details/letterseulertoa00eulegoog|publisher=Internet Archive, Digitzed by Google|accessdate=15 April 2013}}</ref>
<!--
<ref name=fredlett>{{cite book | title=Letters of Voltaire and Frederick the Great, Letter H 7434, 25 January 1778 | author=Frederick II of Prussia | author-link=Frederick II of Prussia | publisher=Brentano's | location=New York | year=1927 | others=[[Richard Aldington]] }}</ref>
-->
<ref name="blind">{{harvnb|Calinger|1996|pp=154–5}}</ref>
<ref name=gekker2>{{harvnb|Gekker|Euler|2007|p=[https://books.google.com/books?id=Ta9bz1wv79AC&pg=PA405 405]}}</ref>
<ref name=AAAS>{{cite web|title=Book of Members, 1780–2010: Chapter E|url=http://www.amacad.org/publications/BookofMembers/ChapterE.pdf|publisher=American Academy of Arts and Sciences|accessdate=28 July 2014}}</ref>
<ref name="euler">{{cite book|title=Leonhard Euler|author=A. Ya. Yakovlev|year=1983|publisher=Prosvesheniye|location=M.}}</ref>
<ref name=novaacta>{{cite journal| year = 1783| title = Eloge de M. Leonhard Euler. Par M. Fuss| journal = Nova Acta Academiae Scientiarum Imperialis Petropolitanae | volume = 1| pages = 159–212 |url=https://www.biodiversitylibrary.org/item/38629#page/177/mode/1up}}</ref>
<ref name=condorcet>{{cite web| url = http://www.math.dartmouth.edu/~euler/historica/condorcet.html| title = Eulogy of Euler – Condorcet| accessdate =30 August 2006| author =Marquis de Condorcet}}</ref>
<ref name=derbysh>{{cite book|last=Derbyshire|first=John|title=[[Prime Obsession]]: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics|year=2003|publisher=Joseph Henry Press|location=Washington, D.C.|page=[https://archive.org/details/primeobsessionbe00derb_046/page/n438 422]}}</ref>
<!--<ref name="Basel">{{cite book| last = Wanner| first = Gerhard|author2=Hairer, Ernst | title = Analysis by its history| edition = 1st|date=March 2005| publisher = Springer| page = 63}}</ref>
-->
<ref name=Boyer>{{cite book|title = A History of Mathematics|url = https://archive.org/details/historymathemati00boye_328|last= Boyer|first=Carl B.|author2=Merzbach, Uta C.|author2-link= Uta Merzbach |publisher= [[John Wiley & Sons]]|isbn= 0-471-54397-7|pages = [https://archive.org/details/historymathemati00boye_328/page/n458 439]–445|year = 1991}}</ref>
<!--
<ref name="Feynman">
{{cite book |last= Feynman|first= Richard|title= The Feynman Lectures on Physics: Volume I|page=10 |chapter= Chapter 22: Algebra |date=June 1970}}</ref>
<ref name=MathInt>{{cite journal | last= Wells | first= David | year= 1990 | title = Are these the most beautiful? | journal = Mathematical Intelligencer | volume = 12 | issue = 3 | pages= 37–41 | doi= 10.1007/BF03024015 }}<br />{{cite journal | last= Wells | first= David | year= 1988 | title = Which is the most beautiful? | journal = Mathematical Intelligencer | volume = 10 | issue = 4 | pages= 30–31 | doi= 10.1007/BF03023741 }}</ref>
<ref name="analysis">{{harvnb|Dunham|1999|loc=Ch. 3, Ch. 4}}</ref>
<ref name="numbertheory">{{harvnb|Dunham|1999|loc=Ch. 1, Ch. 4}}</ref>
<ref name=caldwell>Caldwell, Chris. [http://primes.utm.edu/notes/by_year.html ''The largest known prime by year'']</ref>
<ref name="bridge">{{cite journal| last = Alexanderson| first = Gerald|authorlink=Gerald L. Alexanderson|date=July 2006| title = Euler and Königsberg's bridges: a historical view| journal = Bulletin of the American Mathematical Society| doi = 10.1090/S0273-0979-06-01130-X| volume = 43| page = 567| issue = 4}}</ref>
<ref name=cromw>{{cite book |first=Peter R. |last=Cromwell |title=Polyhedra |url=https://books.google.com/books?id=OJowej1QWpoC&pg=PA189 |year=1999 |publisher=Cambridge University Press |isbn=978-0-521-66405-9 |pages=189–190}}</ref>
<ref name=gibbons>{{cite book |first=Alan |last=Gibbons |title=Algorithmic Graph Theory |url=https://books.google.com/books?id=Be6t04pgggwC&pg=PA72 |year=1985 |publisher=Cambridge University Press |isbn=978-0-521-28881-1 |page=72}}</ref>
<ref name="Cauchy">{{cite journal|author=Cauchy, A. L.|year=1813|title=Recherche sur les polyèdres—premier mémoire|journal=[[Journal de l'École Polytechnique]]|volume= 9 (Cahier 16)|pages=66–86}}</ref>
<ref name="Lhuillier">{{cite journal|author=L'Huillier, S.-A.-J.|title=Mémoire sur la polyèdrométrie|journal=Annales de Mathématiques|volume=3|year=1861|pages=169–189}}</ref>
<ref name="music">{{harvnb|Calinger|1996|pp=144–5}}</ref>
<ref name=yousch>{{cite book |url= |title=Dictionary of Scientific Biography |first=A P |last=Youschkevitch |year=1970–1990 |publisher=New York |isbn= |page= }}</ref>
<ref name="optics">{{cite journal
| author = Home, R. W.
| year = 1988
| title = Leonhard Euler's 'Anti-Newtonian' Theory of Light
| journal = Annals of Science
| volume = 45
| issue = 5
| pages = 521–533 | doi = 10.1080/00033798800200371
}}</ref>
<ref name=euler2>{{cite journal|last=Euler|first=Leonhard|title=Principes généraux de l'état d'équilibre d'un fluide|trans-title=General principles of the state of equilibrium of a fluid|journal=Académie Royale des Sciences et des Belles-Lettres de Berlin, Mémoires|year=1757|volume=11|pages=217–273|url=http://arxiv-web3.library.cornell.edu/pdf/0802.2383.pdf}}</ref>
<ref name="SIAM">{{cite journal | url=http://www.cs.purdue.edu/homes/wxg/EulerLect.pdf | title=Leonhard Euler: His Life, the Man, and His Work | last=Gautschi | first=Walter | journal=SIAM Review | year=2008 | volume=50 | issue=1 | pages=3–33 | doi=10.1137/070702710|bibcode = 2008SIAMR..50....3G }}</ref>
<ref name="logic">{{cite journal |last=Baron |first=M. E. |title=A Note on The Historical Development of Logic Diagrams |journal=The Mathematical Gazette |volume=LIII |issue=383 |pages=113–125 |date=May 1969 |jstor=3614533}}</ref>
<ref name=quest>{{cite web|url=http://www.readingquest.org/strat/venn.html|author=|title=Strategies for Reading Comprehension Venn Diagrams|publisher=|date=|accessdate=|deadurl=yes|archiveurl=https://web.archive.org/web/20090429093334/http://readingquest.org/strat/venn.html|archivedate=29 April 2009|df=dmy-all}}</ref>
<ref name="wolff">{{harvnb|Calinger|1996|pp=153–4}}</ref>
<ref name="diderot">{{cite journal| last = Brown | first = B. H.|date=May 1942| title = The Euler–Diderot Anecdote| journal =The American Mathematical Monthly| volume = 49| issue = 5| pages = 302–303| doi = 10.2307/2303096| jstor = 2303096}}; {{cite journal| last = Gillings | first = R. J.|date=February 1954| title = The So-Called Euler–Diderot Incident| journal =The American Mathematical Monthly| volume = 61| issue = 2| pages = 77–80| doi = 10.2307/2307789| jstor = 2307789}}</ref>
<ref name=persee>{{cite web|last=Marty|first=Jacques|title=Quelques aspects des travaux de Diderot en Mathematiques Mixtes.|url=http://www.persee.fr/web/revues/home/prescript/article/rde_0769-0886_1988_num_4_1_954}}</ref>
<ref name="brown">{{cite journal | journal = [[American Mathematical Monthly]] | volume=49 | issue=5 | last1 = Brown | first1 = B.H. | title = The Euler–Diderot Anecdote | pages = 302–303 |date=May 1942 | doi=10.2307/2303096}}</ref>
<ref name="Struik">{{cite book | title = A Concise History of Mathematics | url = https://archive.org/details/concisehistoryof0000stru_m6j1 | edition = 3rd revised | last1 = Struik | first1 = Dirk J. | publisher = [[Dover Books]] | year = 1967 | page = [https://archive.org/details/concisehistoryof0000stru_m6j1/page/129 129] | authorlink = Dirk Jan Struik | isbn = 0486602559 }}</ref>
<ref name="gillings">{{cite journal | journal = [[American Mathematical Monthly]] | volume=61 | issue=2 | last1 = Gillings | first1 = R.J. | title = The So-Called Euler-Diderot Anecdote | pages = 77–80 |date=Feb 1954 | doi=10.2307/2307789}}</ref>
<ref name="theology">{{cite journal| last = Euler| first = Leonhard | editor = Orell-Fussli| year = 1960| title = Rettung der Göttlichen Offenbahrung Gegen die Einwürfe der Freygeister| journal = Leonhardi Euleri Opera Omnia (series 3)| volume = 12 }}</ref>
-->
<!--<ref name=indep>{{cite news|last=Williams|first=Rob|title=Google Doodle celebrates Leonhard Euler – Swiss mathematician considered one of the greatest of all time |url=http://www.independent.co.uk/life-style/gadgets-and-tech/news/google-doodle-celebrates-leonhard-euler--swiss-mathematician-considered-one-of-the-greatest-of-all-time-8573041.html|location=London|work=The Independent|date=15 April 2013}}</ref>-->
<!--
<ref name=dartm2>[http://math.dartmouth.edu/~euler/pages/E065.html E65 — Methodus... entry at Euler Archives]. Math.dartmouth.edu. Retrieved on 14 September 2011.</ref>
-->
}}
== Pranala luar ==
Baris 219 ⟶ 330:
* [http://www.eulerarchive.org/ Arsip Euler]
* [http://portail.mathdoc.fr/cgi-bin/oetoc?id=OE_EULER_1_2 Leonhard Euler – Œuvres complètes] Gallica-Math
* [http://www.leonhard-euler.ch/ Komite Euler Akademi Ilmu Pengetahuan Swiss] {{Webarchive|url=https://web.archive.org/web/20110520092329/http://www.leonhard-euler.ch/ |date=2011-05-20 }}
* [http://www-history.mcs.st-andrews.ac.uk/References/Euler.html Referensi untuk Leonhard Euler]
* [http://www.euler-2007.ch/en/index.htm Tiga ratus tahun Euler 2007]
Baris 227 ⟶ 338:
* [http://www.math.dartmouth.edu/~euler/historica/family-tree.html Pohon keluarga Euler]
* [http://friedrich.uni-trier.de/oeuvres/20/219/ Korespondensi Euler dengan Frederick Yang Agung, Raja Prusia]
* [http://www.gresham.ac.uk/event.asp?PageId=45&EventId=518 "Euler – 300th anniversary lecture"] {{Webarchive|url=https://web.archive.org/web/20081227054759/http://www.gresham.ac.uk/event.asp?PageId=45&EventId=518 |date=2008-12-27 }}, persembahan dari Robin Wilson pada [[Perguruan Tinggi Gresham]], 9 Mei 2007 (bisa mengunduh file video atau audio)
* [http://euler413.narod.ru/ Dugaan Kuartic Euler]
{{Authority control}}
[[Kategori:Kelahiran 1707]]
|