Metode ensemble: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Penggantian teks otomatis (-resiko +risiko) |
Daniel19EXO (bicara | kontrib) Fitur saranan suntingan: 1 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(3 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 70:
=== Boosting ===
Boosting merupakan cara untuk menghasilkan beberapa model atau penggolongan untuk prediksi atau klasifikasi, dan juga menggabungkan prediksi dari berbagai model ke dalam prediksi tunggal.
Boosting di rancang untuk masalah kelas biner, menciptakan kumpulan dari tiga klasifikasi yang lemah pada satu waktu. klasifikasi pertama (atau [[hipotesis]]) adalah memproses subset acak dari data training yang tersedia. klasifikasi kedua adalah subset yang berbeda dari dataset asli, dimana hasil dari klasifikasi pertama yang sudah benar di klasifikasi dan setengahnya lagi salah diklasifikasi. klasifikasi ketiga kemudian dilatih dengan contoh di mana klasifikasi pertama dan klasifikasi kedua tidak setuju. Ketiga pengklasifikasi ini kemudian digabungkan melalui suara mayoritas tiga arah.
<gallery>
Baris 91:
* Ensembling adalah metode yang terbukti untuk meningkatkan akurasi model dan bekerja di sebagian besar kasus.
* Ini adalah bahan utama untuk memenangkan hampir semua hackathon pembelajaran mesin.
* Ensembling membuat model lebih kuat dan stabil sehingga memastikan kinerja yang layak pada uji kasus di sebagian besar skenario.
* Untuk menangkap hubungan kompleks linier dan sederhana serta non-linear dalam data. Ini dapat dilakukan dengan menggunakan dua model yang berbeda dan membentuk ensemble dua.
Baris 101 ⟶ 98:
* Ensembling mengurangi interpretability model dan membuatnya sangat sulit untuk menarik wawasan bisnis penting di akhir.
* Memakan waktu dan dengan demikian mungkin bukan ide terbaik untuk aplikasi real-time.
* Pemilihan model untuk menciptakan ensemble adalah seni yang benar-benar sulit untuk dikuasai.
Baris 112 ⟶ 107:
* Cha Zhang; Yunqian Ma(2012). ''Ensemble Machine Learning Methods and Applications''. Springer New York Dordrecht Heidelberg London. ISBN 978-1-4419-9325-0
[[Kategori:
|