Nihonium: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Luckas-bot (bicara | kontrib)
k r2.7.1) (bot Menambah: an:Ununtrio
Dessyamylia94 (bicara | kontrib)
Tag: halaman dengan galat kutipan
 
(39 revisi perantara oleh 20 pengguna tidak ditampilkan)
Baris 1:
{{kotak info nihonium}}
{{Elementbox_header | number=113 | symbol=Uut | name=ununtrium | left=[[kopernisium]] | right=[[ununquadium]] | above=[[thallium|Tl]] | below=(Uht) | color1=#eceaec | color2=gray }}
 
{{Elementbox_series | presumably [[poor metal]]s }}
[[File:Electron shell 113 Ununtrium.svg|thumb|Nihonium Konfigurasi elektron]]
{{Elementbox_groupperiodblock | group=13 | period=7 | block=p }}
'''Nihonium''' adalah [[unsur kimia sintetik]] dan [[Unsur transuranium|transuranium]] dan [[Unsur transaktinida|transaktinida]] dalam [[Tabel periodik|sistem periodik unsur]] yang memiliki lambang '''Nh''' dan nomor atom 113.
{{Elementbox_appearance | possibly light or dark element}}
 
{{Elementbox_atomicmass_gpm | [284] }}
Nihonium pertama kali dilaporkan dibuat pada tahun 2003 oleh kolaborasi Rusia-Amerika di [[Joint Institute for Nuclear Research]] (JINR) di [[Dubna]], Rusia, dan pada tahun 2004 oleh tim ilmuwan Jepang di [[Riken]] di [[Prefektur Saitama|Wakō]], [[Prefektur Saitama]], Jepang. Konfirmasi klaim mereka pada tahun-tahun berikutnya melibatkan tim ilmuwan independen yang bekerja di Amerika Serikat, Jerman, Swedia, dan Tiongkok, serta penggugat asli di Rusia dan Jepang. Pada tahun 2015, [[Gabungan Kerja Bersama IUPAC/IUPAP]] mengakui elemen tersebut dan memberikan prioritas hak penemuan dan penamaan elemen tersebut kepada Riken. Tim Riken mengusulkan nama nihonium pada tahun 2016, yang disetujui pada tahun yang sama. Nama tersebut berasal dari nama umum untuk {{nihongo|Jepang|日本|[[Jepang#Etimologi|nihon]]}}.
{{Elementbox_econfig | perhaps &#91;[[radon|Rn]]&#93; 5f<sup>14</sup> 6d<sup>10</sup> 7s<sup>2</sup> 7p<sup>1</sup>{{br}}(guess based on [[thallium]]) }}
 
{{Elementbox_epershell | 2, 8, 18, 32, 32, 18, 3 }}
Sangat sedikit yang diketahui tentang nihonium, karena hanya dibuat dalam jumlah sangat kecil dan dapat membusuk dalam hitungan detik. Anomali umur panjang beberapa nuklida superberat, termasuk beberapa isotop nihonium, dijelaskan oleh teori "[[Pulau kestabilan nuklir|pulau stabilitas]]". Eksperimen mendukung teori tersebut, dengan waktu paruh isotop nihonium terkonfirmasi meningkat dari milidetik menjadi detik saat [[neutron]] ditambahkan. Nihonium telah dihitung memiliki sifat yang mirip dengan homolognya [[boron]], [[aluminium]], [[galium]], [[indium]], dan [[talium]]. Semua kecuali boron adalah [[Logam miskin|logam pasca-transisi]], dan nihonium juga diharapkan menjadi logam pasca-transisi. Itu juga harus menunjukkan beberapa perbedaan utama dari mereka; misalnya, nihonium harus lebih stabil dalam keadaan +1 [[keadaan oksidasi]] daripada keadaan +3, seperti talium, tetapi dalam keadaan +1 nihonium harus berperilaku lebih seperti [[perak]] dan [[astatin]] daripada talium. Eksperimen pendahuluan pada tahun 2017 menunjukkan bahwa unsur nihonium tidak terlalu [[Volatilitas (kimia)|volatilitas]]; kimiawinya sebagian besar masih belum dijelajahi.
{{Elementbox_phase | presumably a [[solid]] }}
 
{{Elementbox_cas_number | 54084-70-7 }}
==Sejarah==
{{Elementbox_isotopes_begin | color1=#eceaec | color2=gray }}
=== Indikasi awal===
{{Elementbox_isotopes_decay | mn=284 | sym=Uut | na=[[synthetic radioisotope|syn]] | hl=0.49 s | dm=[[alpha decay|α]] | de=10.00 | pn=280 | ps=Rg }}
Unsur-unsur sintesis [[bohrium|107]] hingga [[Kopernisium|112]] dilakukan di [[Pusat Penelitian Ion Berat GSI Helmholtz]] di [[Darmstadt]], Jerman, dari tahun 1981 hingga 1996. Unsur-unsur ini dibuat oleh reaksi fusi dingin{{efn|[[Transactinide element]]s, such as nihonium, are produced by [[nuclear fusion]]. These fusion reactions can be divided into "hot" and "cold" fusion, depending on the excitation energy of the compound nucleus produced. "Cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved under room temperature conditions.<ref>{{cite journal |doi=10.1016/0022-0728(89)80006-3 |title=Electrochemically induced nuclear fusion of deuterium |date=1989 |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308}}</ref> In hot fusion reactions, light, high-energy projectiles are accelerated towards heavy targets ([[actinide]]s), creating compound nuclei at high excitation energy (~40–50&nbsp;[[electronvolt|MeV]]) that may fission, or alternatively emit several (3 to 5) neutrons.<ref name="fusion">{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |date=2009 |doi=10.1351/PAC-REP-08-03-05|doi-access=free }}</ref> Cold fusion reactions use heavier projectiles, typically from the [[period 4 element|fourth period]], and lighter targets, usually [[lead]] and [[bismuth]]. The fused nuclei produced have a relatively low excitation energy (~10–20&nbsp;MeV), which decreases the probability that they will undergo fission reactions. As the fused nuclei cool to the [[ground state]], they emit only one or two neutrons. Hot fusion produces more neutron-rich products because actinides have the highest neutron-to-proton ratios of any elements, and is currently the only method to produce the superheavy elements from [[flerovium]] (element 114) onwards.<ref name="AM89">{{Cite journal |first1=Peter |last1=Armbruster |first2=Gottfried |last2=Munzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |date=1989}}</ref>}} di mana target yang terbuat dari [[talium]], [[timbal]], dan [[bismut]], yang berada di sekitar [[Fisi nuklir|konfigurasi stabil]] dari 82 proton, dibombardir dengan ion berat [[unsur periode 4]]. Hal ini kemudian menciptakan inti yang menyatu dengan energi eksitasi rendah karena stabilitas inti target, yang secara signifikan meningkatkan hasil [[Unsur transaktinida|elemen superberat]]. Cold fusion dipelopori oleh [[Yuri Oganessian]] dan timnya pada tahun 1974 di [[Joint Institute for Nuclear Research]] (JINR) di [[Dubna]], Uni Soviet. Hasil dari reaksi fusi dingin ditemukan menurun secara signifikan dengan meningkatnya nomor atom; inti yang dihasilkan sangat kekurangan neutron dan berumur pendek. Tim GSI mencoba mensintesis elemen 113 melalui fusi dingin pada tahun 1998 dan 2003, membombardir bismut-209 dengan [[Seng|zinc]]-70; kedua upaya itu tidak berhasil.<ref name="Chapman" /><ref>{{cite conference |url=https://www.epj-conferences.org/articles/epjconf/pdf/2016/26/epjconf-NS160-06001.pdf |title=The discovery of elements 107 to 112 |last1=Hofmann |first1=Sigurd |date=2016 |conference=Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements |doi=10.1051/epjconf/201613106001|doi-access=free }}</ref>
{{Elementbox_isotopes_decay | mn=283 | sym=Uut | na=[[synthetic radioisotope|syn]] | hl=0.10 s | dm=α| de=10.12 | pn=279 | ps=Rg }}
 
{{Elementbox_isotopes_decay | mn=282 | sym=Uut | na=[[synthetic radioisotope|syn]] | hl=73 ms | dm=α| de=10.63 | pn=278 | ps=Rg }}
Pada tahun 1998, kolaborasi JINR–LLNL memulai upaya mereka pada unsur 114, membombardir target [[Plutonium-244]] dengan ion kalsium-48:
{{Elementbox_isotopes_decay | mn=278 | sym=Uut | na=[[synthetic radioisotope|syn]] | hl=0.34 ms | dm=α | de=11.68 | pn=274 | ps=Rg }}
:{{nuclide|plutonium|244}} + {{nuclide|kalsium|48}} → <sup>292</sup>114* → <sup>290</sup>114 + 2 {{SubatomicParticle|neutron}} + e<sup>−</sup> → <sup>290</sup>113 + [[Neutrino elektron|ν<sub>e</sub>]]
{{Elementbox_isotopes_end}}
 
{{Elementbox_footer | color1=#eceaec | color2=gray }}
Satu atom diamati yang dianggap sebagai isotop <sup>289</sup>114: hasilnya dipublikasikan pada Januari 1999.<ref name="99Og01">{{cite journal |last1=Oganessian |first1=Yu. Ts. |display-authors=etal |date=1999 |title=Synthesis of Superheavy Nuclei in the <sup>48</sup>Ca + <sup>244</sup>Pu Reaction |url=http://flerovlab.jinr.ru/linkc/flnr_presentations/articles/synthesis_of_Element_114_1999.pdf |journal=[[Physical Review Letters]] |volume=83 |issue=16 |page=3154 |bibcode=1999PhRvL..83.3154O |doi=10.1103/PhysRevLett.83.3154 |access-date=5 April 2017 |archive-date=30 July 2020 |archive-url=https://web.archive.org/web/20200730232521/http://flerovlab.jinr.ru/linkc/flnr_presentations/articles/synthesis_of_Element_114_1999.pdf |url-status=dead }}</ref> Meskipun banyak upaya untuk mengulangi reaksi ini, isotop dengan sifat peluruhan ini tidak pernah ditemukan lagi, dan identitas pasti dari aktivitas ini tidak diketahui.<ref name="04OgJINRPP">{{cite journal |last=Oganessian |first=Yu. Ts. |display-authors=etal |date=2004 |title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm + <sup>48</sup>Ca |url=http://www.jinr.ru/publish/Preprints/2004/160(E7-2004-160).pdf |journal=[[Physical Review C]] |volume=70 |issue=6 |page=064609 |bibcode=2004PhRvC..70f4609O |doi=10.1103/PhysRevC.70.064609 |url-status=dead |archive-url=https://web.archive.org/web/20080528130343/http://www.jinr.ru/publish/Preprints/2004/160%28E7-2004-160%29.pdf |archive-date=28 May 2008 }}</ref> Sebuah makalah tahun 2016 oleh [[Sigurd Hofmann]] ''et al.'' menganggap bahwa penjelasan yang paling mungkin dari hasil tahun 1998 adalah bahwa dua neutron dipancarkan oleh inti senyawa yang dihasilkan, menghasilkan <sup>290</sup>114 dan [[penangkapan elektron]] menjadi <sup>290</sup>113, sementara lebih banyak neutron dipancarkan di semua rantai produksi lainnya. Ini akan menjadi laporan pertama dari rantai peluruhan dari isotop elemen 113, tetapi tidak dikenali pada saat itu, dan penugasannya masih belum pasti. Aktivitas berumur panjang serupa yang diamati oleh tim JINR pada Maret 1999 dalam reaksi <sup>242</sup>Pu + <sup>48</sup>Ca mungkin disebabkan oleh putri penangkap elektron dari <sup>287 </sup>114, <sup>287</sup>113; tugas ini juga tentatif.
'''Ununtrium''' {{{pronEng|juːˈnʌntriəm}} atau {{IPA|/əˈnʌntriəm/}}) adalah [[unsur kimia sintetik]] dalam [[sistem periodik unsur]] yang memiliki lambang '''Uut''' dan nomor atom 113.
 
=== Kolaborasi JINR–LLNL ===
Penemuan unsur 114 yang sekarang dikonfirmasi terjadi pada bulan Juni 1999 ketika tim JINR mengulangi reaksi <sup>244</sup>Pu + <sup>48</sup>Ca pertama dari tahun 1998;<ref name="00Og01">{{cite journal |last1=Oganessian |first1=Yu. Ts. |display-authors=etal |date=2000 |title=Synthesis of superheavy nuclei in the <sup>48</sup>Ca + <sup>244</sup>Pu reaction: <sup>288</sup>114 |journal=[[Physical Review C]] |volume=62 |issue=4 |page=041604 |bibcode=2000PhRvC..62d1604O |doi=10.1103/PhysRevC.62.041604}}</ref><ref name="04Og01">{{cite journal |last1=Oganessian |first1=Yu. Ts. |display-authors=etal |date=2004 |title=Measurements of cross sections for the fusion-evaporation reactions <sup>244</sup>Pu(<sup>48</sup>Ca,xn)<sup>292−x</sup>114 and <sup>245</sup>Cm(<sup>48</sup>Ca,xn)<sup>293−x</sup>116 |journal=[[Physical Review C]] |volume=69 |issue=5 |page=054607 |bibcode=2004PhRvC..69e4607O |doi=10.1103/PhysRevC.69.054607|url=http://link.aps.org/abstract/PRC/V69/E054607/ }}</ref> setelah itu, tim JINR menggunakan teknik fusi panas yang sama untuk mensintesis elemen [[livermorium|116]] dan [[oganeson|118]] masing-masing pada tahun 2000 dan 2002 melalui <sup>248</sup>[[Kurium|Cm]] + <sup>48</sup>Ca dan <sup>249</sup>[[Kalifornium|Cf]] + <sup>48</sup>reaksi Ca. Mereka kemudian mengalihkan perhatian mereka ke unsur-unsur bernomor ganjil yang hilang, karena proton ganjil dan kemungkinan neutron akan menghalangi peluruhan oleh [[Pembelahan spontan|fisi spontan]] dan menghasilkan rantai peluruhan yang lebih panjang.
 
:{{nuclide|link=no|Amerisium|243}} + {{nuclide|link=no|kalsium|48}} → <sup>291</sup>115* → <sup>288</sup>115 + 3 {{SubatomicParticle|link=no|neutron}} → <sup>284</sup>113 + {{SubatomicParticle|link=no|alpha}}
:{{nuclide|Amerisium|243}} + {{nuclide|kalsium|48}} → <sup>291</sup>115* → <sup>287</sup>115 + 4 {{SubatomicParticle|link=no|neutron}} → <sup>283</sup>113 + {{SubatomicParticle|link=no|alpha}}
 
Empat peluruhan alfa selanjutnya teramati, diakhiri dengan [[Pembelahan spontan|fisi spontan]] isotop unsur 105, [[dubnium]].
 
=== Riken===
Sementara kolaborasi JINR–LLNL telah mempelajari reaksi fusi dengan <sup>48</sup>Ca, tim ilmuwan Jepang di [[Riken]] Nishina Center for Accelerator-Based Science di [[Prefektur Saitama|Wakō]], Jepang, dipimpin oleh [[Kōsuke Morita]] telah mempelajari reaksi fusi dingin. Morita sebelumnya mempelajari sintesis elemen superberat di JINR sebelum memulai timnya sendiri di Riken. Pada tahun 2001, timnya mengonfirmasi penemuan unsur-unsur oleh GSI [[hasium|108]], [[Darmstadtium|110]], [[Roentgenium|111]], dan 112. Mereka kemudian membuat percobaan baru pada unsur 113, menggunakan reaksi <sup>209</sup>Bi + <sup>70</sup>Zn yang sama yang dicoba oleh GSI pada tahun 1998 namun gagal. Meskipun hasil yang diharapkan jauh lebih rendah daripada teknik fusi panas JINR dengan kalsium-48, Riken tim memilih untuk menggunakan fusi dingin karena isotop yang disintesis akan meluruh alfa menjadi nuklida turunan yang diketahui dan membuat penemuan lebih pasti, dan tidak memerlukan penggunaan target radioaktif.<ref>{{cite web |url=https://www.youtube.com/watch?v=kGVkkVMgvOg | archive-url=https://ghostarchive.org/varchive/youtube/20211114/kGVkkVMgvOg| archive-date=2021-11-14 | url-status=live|title=Q & A session |last=Morita |first=Kōsuke |date=5 February 2016 |publisher=The Foreign Correspondents' Club of Japan |via=YouTube |access-date=28 April 2017}}{{cbignore}}</ref>
 
Pengeboman <sup>209</sup>Bi dengan <sup>70</sup>Zn di Riken dimulai pada September 2003<!--the 5th-->.<ref name="RudolphForsberg2013">{{cite journal |last1=Rudolph |first1=D. |last2=Forsberg |first2=U. |last3=Golubev |first3=P. |last4=Sarmiento |first4=L. G. |last5=Yakushev |first5=A. |last6=Andersson |first6=L.-L. |last7=Di Nitto |first7=A. |last8=Düllmann |first8=Ch. E. |last9=Gates |first9=J. M.|last10=Gregorich|first10=K. E. |last11=Gross |first11=C. J. |last12=Heßberger |first12=F. P. |last13=Herzberg |first13=R.-D. |last14=Khuyagbaatar |first14=J. |last15=Kratz |first15=J. V. |last16=Rykaczewski |first16=K. |last17=Schädel |first17=M. |last18=Åberg |first18=S. |last19=Ackermann |first19=D.|last20=Block|first20=M. |last21=Brand |first21=H. |last22=Carlsson |first22=B. G. |last23=Cox |first23=D. |last24=Derkx |first24=X. |last25=Eberhardt |first25=K. |last26=Even |first26=J. |last27=Fahlander |first27=C. |last28=Gerl |first28=J. |last29=Jäger |first29=E.|last30=Kindler|first30=B. |last31=Krier |first31=J. |last32=Kojouharov |first32=I. |last33=Kurz |first33=N. |last34=Lommel |first34=B. |last35=Mistry |first35=A. |last36=Mokry |first36=C. |last37=Nitsche |first37=H. |last38=Omtvedt |first38=J. P. |last39=Papadakis |first39=P.|last40=Ragnarsson|first40=I. |last41=Runke |first41=J. |last42=Schaffner |first42=H. |last43=Schausten |first43=B. |last44=Thörle-Pospiech |first44=P. |last45=Torres |first45=T. |last46=Traut |first46=T. |last47=Trautmann |first47=N. |last48=Türler |first48=A. |last49=Ward |first49=A.|last50=Ward|first50=D. E. |last51=Wiehl |first51=N. |title=Spectroscopy of Element 115 Decay Chains |journal=Physical Review Letters |volume=111 |issue=11 |pages=112502 |year=2013 |issn=0031-9007 |doi=10.1103/PhysRevLett.111.112502 |pmid=24074079 |url=http://lup.lub.lu.se/record/4002358 |type=Submitted manuscript|bibcode=2013PhRvL.111k2502R|s2cid=3838065 }}</ref> Tim mendeteksi satu atom <sup>278</sup>113 pada bulan Juli 2004<!--the 23rd--> dan menerbitkan hasilnya pada bulan September<!--the 28th-->:<ref name="04Mo01">{{cite journal |title=Experiment on the Synthesis of Element 113 in the Reaction <sup>209</sup>Bi(<sup>70</sup>Zn,n)<sup>278</sup>113 |year=2004 |journal=Journal of the Physical Society of Japan |volume=73 |issue=10 |pages=2593–2596 |doi=10.1143/JPSJ.73.2593 |bibcode=2004JPSJ...73.2593M |last1=Morita |first1=Kosuke |last2=Morimoto |first2=Kouji |last3=Kaji |first3=Daiya |last4=Akiyama |first4=Takahiro |last5=Goto |first5=Sin-ichi |last6=Haba |first6=Hiromitsu |first7=Eiji |last7=Ideguchi |first8=Rituparna |last8=Kanungo |first9=Kenji |last9=Katori|first10=Hiroyuki |last10=Koura |first11=Hisaaki |last11=Kudo |first12=Tetsuya |last12=Ohnishi |first13=Akira |last13=Ozawa |first14=Toshimi |last14=Suda |first15=Keisuke |last15=Sueki |first16=HuShan |last16=Xu |first17=Takayuki |last17=Yamaguchi |first18=Akira |last18=Yoneda |first19=Atsushi |last19=Yoshida|first20=YuLiang |last20=Zhao|doi-access=free }}</ref>
 
:{{nuclide|link=no|Bismut|209}} + {{nuclide|link=no|Seng|70}} → <sup>279</sup>113* → <sup>278</sup>113 + {{SubatomicParticle|link=no|neutron}}
 
Tim Riken mengamati empat peluruhan alfa dari <sup>278</sup>113, menciptakan rantai peluruhan yang melewati <sup>274</sup>Rg, <sup>270</sup>Mt, dan <sup>266</sup>Bh sebelum diakhiri dengan pembelahan spontan sebesar <sup>262</sup>Db. Data peluruhan yang mereka amati untuk peluruhan alfa <sup>266</sup>Bh cocok dengan data tahun 2000, memberikan dukungan untuk klaim mereka. Pembelahan spontan turunannya <sup>262</sup>Db belum pernah diketahui sebelumnya; tim Amerika hanya mengamati peluruhan alfa dari nuklida ini.
 
=== Jalan menuju konfirmasi===
Ketika penemuan unsur baru diklaim, [[IUPAC/IUPAP Joint Working Party|Joint Working Party]] (JWP) dari [[Persatuan Kimia Murni dan Terapan Internasional]] (IUPAC) dan [[Persatuan Fisika Murni dan Terapan Internasional]] (IUPAP) berkumpul untuk memeriksa klaim sesuai dengan kriteria mereka untuk penemuan unsur baru, dan memutuskan prioritas ilmiah dan hak penamaan untuk unsur-unsur tersebut. Menurut kriteria JWP, penemuan harus menunjukkan bahwa suatu unsur memiliki nomor atom yang berbeda dari semua nilai yang diamati sebelumnya. Ini juga sebaiknya diulangi oleh laboratorium lain, meskipun persyaratan ini telah dikesampingkan jika datanya berkualitas sangat tinggi. Demonstrasi semacam itu harus menetapkan sifat-sifat, baik fisik maupun kimia, dari unsur baru dan menetapkan bahwa sifat-sifat itu adalah unsur yang sebelumnya tidak diketahui. Teknik utama yang digunakan untuk mendemonstrasikan nomor atom adalah reaksi silang (menciptakan nuklida yang diklaim sebagai induk atau anak dari nuklida lain yang dihasilkan oleh reaksi yang berbeda) dan penahan rantai peluruhan ke nuklida anak yang diketahui. Untuk JWP, prioritas dalam konfirmasi lebih diutamakan daripada tanggal klaim awal. Kedua tim berangkat untuk mengkonfirmasi hasil mereka dengan metode ini.
[[File:Element 113 decay chains.svg|thumb|upright=3|center|Rangkuman rantai peluruhan yang melewati isotop unsur 113, berakhir di [[mendelevium]] (unsur 101) atau lebih awal. Dua rantai dengan batas nuklida tebal diterima oleh JWP sebagai bukti penemuan unsur 113 dan induknya, unsur 115 dan 117. Data disajikan pada tahun 2015 (sebelum kesimpulan JWP dipublikasikan).]]
 
==== 2004–2008 ====
Pada bulan Juni 2004 dan lagi pada bulan Desember 2005, kolaborasi JINR–LLNL memperkuat klaim mereka atas penemuan unsur 113 dengan melakukan eksperimen kimia pada <sup>268</sup>[[Dubnium|Db]], [[Produk peluruhan|produk peluruhan akhir]] dari <sup>288</sup>115. Ini berharga karena tidak ada nuklida dalam rantai peluruhan ini yang diketahui sebelumnya, sehingga klaim mereka tidak didukung oleh data eksperimen sebelumnya, dan eksperimen kimia akan memperkuat kasus klaim mereka, karena kimia dubnium diketahui. <sup>268</sup>Db berhasil diidentifikasi dengan mengekstraksi produk peluruhan akhir, mengukur aktivitas [[Pembelahan spontan|fisi spontan]] (SF) dan menggunakan teknik identifikasi kimiawi untuk memastikan bahwa mereka berperilaku seperti [[Unsur golongan 5|elemen golongan 5]] (dubnium diketahui berada di grup 5).<ref name="e115">{{cite journal |title=Chemical identification of dubnium as a decay product of element 115 produced in the reaction <sup>48</sup>Ca+<sup>243</sup>Am |first1=S. N. |last1=Dmitriev |first2=Yu. Ts. |last2=Oganessyan |first3=V. K. |last3=Utyonkov |first4=S. V. |last4=Shishkin |first5=A. V. |last5=Yeremin |first6=Yu. V. |last6=Lobanov |first7=Yu. S. |last7=Tsyganov |first8=V. I. |last8=Chepygin |first9=E. A. |last9=Sokol |first10=G. K. |last10=Vostokin |first11=N. V. |last11=Aksenov |first12=M. |last12=Hussonnois |first13=M. G. |last13=Itkis |first14=H. W. |last14=Gäggeler |first15=D. |last15=Schumann |first16=H. |last16=Bruchertseifer |first17=R. |last17=Eichler |first18=D. A. |last18=Shaughnessy |first19=P. A. |last19=Wilk |first20=J. M. |last20=Kenneally |first21=M. A. |last21=Stoyer |first22=J. F. |last22=Wild |journal=Mendeleev Communications |volume=15 |issue=1 |date=2005 |pages=1–4 |doi=10.1070/MC2005v015n01ABEH002077|s2cid=98386272 |url=https://semanticscholar.org/paper/047e5d859de1f8b9ead4795391ca9fc766f3b237}}</ref><ref>{{cite journal |title=Synthesis of elements 115 and 113 in the reaction <sup>243</sup>Am + <sup>48</sup>Ca |doi=10.1103/PhysRevC.72.034611 |date=2005 |author=Oganessian, Yu. Ts. |journal=Physical Review C |volume=72 |pages=034611 |last2=Utyonkov |first2=V. |last3=Dmitriev |first3=S. |last4=Lobanov |first4=Yu. |last5=Itkis |first5=M. |last6=Polyakov |first6=A. |last7=Tsyganov |first7=Yu. |last8=Mezentsev |first8=A. |last9=Yeremin |first9=A.|first10=A. A. |last10=Voinov |first11=E. A. |last11=Sokol |first12=G. G. |last12=Gulbekian |first13=S. L. |last13=Bogomolov |first14=S. |last14=Iliev |first15=V. G. |last15=Subbotin |first16=A. M. |last16=Sukhov |first17=G. V. |last17=Buklanov |first18=S. V. |last18=Shishkin |first19=V. I. |last19=Chepygin|first20=G. K. |last20=Vostokin |first21=N. V. |last21=Aksenov |first22=M. |last22=Hussonnois |first23=K. |last23=Subotic |first24=V. I. |last24=Zagrebaev |first25=K. J. |last25=Moody |first26=J. B. |last26=Patin |first27=J. F. |last27=Wild |first28=M. A. |last28=Stoyer |first29=N. J. |last29=Stoyer|first30=D. A. |last30=Shaughnessy |first31=J. M. |last31=Kenneally |first32=P. A. |last32=Wilk |first33=R. W. |last33=Lougheed |first34=H. W. |last34=Gäggeler |first35=D. |last35=Schumann |first36=H. |last36=Bruchertseifer |first37=R. |last37=Eichler |issue=3 |bibcode=2005PhRvC..72c4611O|display-authors=10|url=https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A13194}}</ref>
 
Pada Juni 2006, kolaborasi JINR–LLNL mengklaim telah mensintesis isotop baru unsur 113 secara langsung dengan membombardir target [[neptunium]]-237 dengan inti kalsium-48 yang dipercepat:
 
:{{nuclide|link=no|Neptunium|237}} + {{nuclide|link=no|Kalsium|48}} → <sup>285</sup>113* → <sup>282</sup>113 + 3 {{SubatomicParticle|link=no|neutron}}
 
==== 2009–2015 ====
JWP menerbitkan laporannya tentang elemen 113–116 dan 118 pada tahun 2011. JWP mengakui kolaborasi JINR–LLNL telah menemukan elemen 114 dan 116, tetapi tidak menerima klaim salah satu tim atas elemen 113 dan tidak menerima klaim JINR–LLNL untuk elemen 115 dan 118. Klaim JINR–LLNL untuk elemen 115 dan 113 telah ditemukan berdasarkan identifikasi kimia putri mereka dubnium, tetapi JWP keberatan karena teori saat ini tidak dapat membedakan antara superberat [[elemen grup 4|grup 4]] dan grup 5 unsur dengan sifat kimianya dengan keyakinan yang cukup untuk memungkinkan penugasan ini.<ref name="JWP">{{cite journal |author=Barber, Robert C. |author2=Karol, Paul J |author3=Nakahara, Hiromichi |author4=Vardaci, Emanuele |author5=Vogt, Erich W. |title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report) |doi=10.1351/PAC-REP-10-05-01 |journal=Pure Appl. Chem. |date=2011 |volume=83 |issue=7 |page=1485|doi-access=free }}</ref>
 
Pada awal tahun 2009, tim Riken mensintesis produk peluruhan <sup>266</sup>Bh langsung dalam reaksi <sup>248</sup>Cm + <sup>23</sup>Na untuk membangun hubungannya dengan <sup >278</sup>113 sebagai pengeboman silang. Mereka juga membentuk peluruhan bercabang <sup>262</sup>Db, yang terkadang mengalami pembelahan spontan dan terkadang mengalami peluruhan alfa yang diketahui sebelumnya menjadi <sup>258</sup>Lr.<ref>{{cite journal |last1=Morita |first1=Kosuke |last2=Morimoto |first2=Kouji |first3=Daiya |last3=Kaji |first4=Hiromitsu |last4=Haba |first5=Kazutaka |last5=Ozeki |first6=Yuki |last6=Kudou |first7=Nozomi |last7=Sato |first8=Takayuki |last8=Sumita |first9=Akira |last9=Yoneda |first10=Takatoshi |last10=Ichikawa |first11=Yasuyuki |last11=Fujimori |first12=Sin-ichi |last12=Goto |first13=Eiji |last13=Ideguchi |first14=Yoshitaka |last14=Kasamatsu |first15=Kenji |last15=Katori |first16=Yukiko |last16=Komori |first17=Hiroyuki |last17=Koura |first18=Hisaaki |last18=Kudo |first19=Kazuhiro |last19=Ooe |first20=Akira |last20=Ozawa |first21=Fuyuki |last21=Tokanai |first22=Kazuaki |last22=Tsukada |first23=Takayuki |last23=Yamaguchi |first24=Atsushi |last24=Yoshida |date=25 May 2009 |title=Decay Properties of <sup>266</sup>Bh and <sup>262</sup>Db Produced in the <sup>248</sup>Cm + <sup>23</sup>Na Reaction |journal=Journal of the Physical Society of Japan |volume=78 |issue=6 |pages=064201–1–6 |doi=10.1143/JPSJ.78.064201 |arxiv=0904.1093 |bibcode=2009JPSJ...78f4201M|s2cid=16415500 }}</ref><ref name="morimoto">{{cite web |url=http://www.kernchemie.uni-mainz.de/downloads/che_7/presentations/morimoto.pdf |title=Production and Decay Properties of <sup>266</sup>Bh and its daughter nuclei by using the <sup>248</sup>Cm(<sup>23</sup>Na,5n)<sup>266</sup>Bh Reaction |last1=Morimoto |first1=Kouji |first2=K. |last2=Morita |first3=D. |last3=Kaji |first4=H. |last4=Haba |first5=K. |last5=Ozeki |first6=Y. |last6=Kudou |first7=N. |last7=Sato |first8=T. |last8=Sumita |first9=A. |last9=Yoneda |first10=T. |last10=Ichikawa |first11=Y. |last11=Fujimori |first12=S. |last12=Goto |first13=E. |last13=Ideguchi |first14=Y. |last14=Kasamatsu |first15=K. |last15=Katori |first16=Y. |last16=Komori |first17=H. |last17=Koura |first18=H. |last18=Kudo |first19=K. |last19=Ooe |first20=A. |last20=Ozawa |first21=F. |last21=Tokanai |first22=K. |last22=Tsukada |first23=T. |last23=Yamaguchi |first24=A. |last24=Yoshida |date=October 2009 |via=[[University of Mainz]] |access-date=28 April 2017 |archive-url=https://web.archive.org/web/20170921193318/http://www.kernchemie.uni-mainz.de/downloads/che_7/presentations/morimoto.pdf |archive-date=21 September 2017 |url-status=dead}}</ref>
 
:{{nuclide|link=no|Berkelium|249}} + {{nuclide|link=no|Kalsium|48}} → <sup>297</sup>117* → <sup>294</sup>117 + 3 {{SubatomicParticle|link=no|neutron}} → <sup>290</sup>115 + α → <sup>286</sup>113 + α
:{{nuclide|link=no|Berkelium|249}} + {{nuclide|link=no|Kalsium|48}} → <sup>297</sup>117* → <sup>293</sup>117 + 4 {{SubatomicParticle|link=no|neutron}} → <sup>289</sup>115 + α → <sup>285</sup>113 + α
 
Isotop baru <sup>285</sup>113 dan <sup>286</sup>113 yang dihasilkan tidak tumpang tindih dengan klaim sebelumnya <sup>282</sup>113, <sup>283</sup>113, dan <sup>284</sup>113, sehingga reaksi ini tidak dapat digunakan sebagai pengeboman silang untuk mengkonfirmasi klaim tahun 2003 atau 2006.
 
Setelah 450 hari lagi penyinaran bismut dengan proyektil seng, Riken menghasilkan dan mengidentifikasi atom <sup>278</sup>113 lainnya pada Agustus 2012<!--tanggal 12-->.<ref name="six-alpha">{{cite journal |journal=Journal of the Physical Society of Japan |volume=81 |pages=103201 |date=2012 |title=New Results in the Production and Decay of an Isotope, <sup>278</sup>113, of the 113th Element |author=K. Morita |doi=10.1143/JPSJ.81.103201 |last2=Morimoto |first2=Kouji |last3=Kaji |first3=Daiya |last4=Haba |first4=Hiromitsu |last5=Ozeki |first5=Kazutaka |last6=Kudou |first6=Yuki |last7=Sumita |first7=Takayuki |last8=Wakabayashi |first8=Yasuo |last9=Yoneda |first9=Akira|first10=Kengo |last10=Tanaka |first11=Sayaka |last11=Yamaki |first12=Ryutaro |last12=Sakai |first13=Takahiro |last13=Akiyama |first14=Shin-ichi |last14=Goto |first15=Hiroo |last15=Hasebe |first16=Minghui |last16=Huang |first17=Tianheng |last17=Huang |first18=Eiji |last18=Ideguchi |first19=Yoshitaka |last19=Kasamatsu|first20=Kenji |last20=Katori |first21=Yoshiki |last21=Kariya |first22=Hidetoshi |last22=Kikunaga |first23=Hiroyuki |last23=Koura |first24=Hisaaki |last24=Kudo |first25=Akihiro |last25=Mashiko |first26=Keita |last26=Mayama |first27=Shin-ichi |last27=Mitsuoka |first28=Toru |last28=Moriya |first29=Masashi |last29=Murakami|first30=Hirohumi |last30=Murayama |first31=Saori |last31=Namai |first32=Akira |last32=Ozawa |first33=Nozomi |last33=Sato |first34=Keisuke |last34=Sueki |first35=Mirei |last35=Takeyama |first36=Fuyuki |last36=Tokanai |first37=Takayuki |last37=Yamaguchi |first38=Atsushi |last38=Yoshida |issue=10|display-authors=10 |arxiv=1209.6431 |bibcode=2012JPSJ...81j3201M|s2cid=119217928 }}</ref> Dalam kasus ini, serangkaian enam peluruhan alfa teramati, menghasilkan isotop [[mendelevium]]:
 
:<sup>278</sup>113 → {{nuclide|link=no|Roentgenium|274}} + {{SubatomicParticle|link=no|alpha}} → {{nuclide|link=no|Meitnerium|270}} + {{SubatomicParticle|link=no|alpha}} → {{nuclide|link=no|Bohrium|266}} + {{SubatomicParticle|link=no|alpha}} → {{nuclide|link=no|Dubnium|262}} + {{SubatomicParticle|link=no|alpha}} → {{nuclide|link=no|lawrensium|258}} + {{SubatomicParticle|link=no|alpha}} → {{nuclide|link=no|Mendelevium|254}} + {{SubatomicParticle|link=no|alpha}}
 
=== Nama ===
Nama "nihonium" berasal dari kata [[bahasa Jepang]] "Nihon" yang berarti Jepang/matahari. Nama kuno unsur ini adalah "ununtrium" (pengucapan: /juːˈnʌntriəm/ atau /əˈnʌntriəm/) dengan lambang "Uut" yang [[Nama unsur sistematik|berarti]] "113".
 
== Isotop ==
Semua [[isotop]] nihonium bersifat radioaktif, tidak ada isotop stabil. Isotop dengan [[waktu paruh]] yang terlama adalah nihonium-286, waktunya 10 sekon.
=== Stabilitas dan waktu paruh ===
[[File:Island of Stability derived from Zagrebaev.png|thumb|upright=1.8|Bagan nuklida berat dengan waktu paruh yang diketahui dan diprediksi (nuklida yang diketahui ditunjukkan dengan batas). Nihonium (baris 113) diperkirakan berada di dalam "pulau stabilitas" (lingkaran putih) sehingga nukleusnya sedikit lebih stabil daripada yang diperkirakan sebelumnya; isotop nihonium yang diketahui terlalu miskin neutron untuk berada di dalam pulau.]]
Stabilitas inti menurun dengan cepat seiring dengan kenaikan nomor atom setelah [[kurium]], unsur 96, yang waktu paruhnya lebih dari sepuluh ribu kali lebih lama daripada unsur berikutnya. Semua isotop dengan nomor atom di atas [[mendelevium|101]] mengalami peluruhan radioaktif dengan waktu paruh kurang dari 30 jam: ini karena [[Hukum Coulomb|tolakan Coulomb]] proton yang terus meningkat, sehingga [[gaya nuklir kuat]] tidak dapat menahan nukleus melawan [[Pembelahan spontan|fisi spontan]] dalam waktu lama. Perhitungan menunjukkan bahwa dengan tidak adanya faktor penstabil lainnya, unsur dengan lebih dari [[lawrensium|proton 103]] seharusnya tidak ada. Para peneliti di tahun 1960-an menyarankan bahwa [[Fisi nuklir|cangkang nuklir]] tertutup sekitar 114 proton dan 184 neutron harus menangkal ketidakstabilan ini, dan menciptakan "[[pulau stabilitas]]" yang berisi nuklida dengan waktu paruh mencapai ribuan atau lebih. jutaan tahun. Keberadaan pulau tersebut masih belum terbukti, tetapi keberadaan [[Unsur transaktinida|elemen superberat]] (termasuk nihonium) memastikan bahwa efek stabilisasinya nyata, dan secara umum nuklida superberat yang diketahui berumur lebih panjang saat mendekati lokasi yang diprediksi.<ref>{{cite book |title=Van Nostrand's Scientific Encyclopedia |first1=Douglas M. |last1=Considine |first2=Glenn D. |last2=Considine |publisher=Wiley-Interscience |date=1994 |edition=8th |isbn=978-1-4757-6918-0 |page=623}}</ref><ref name="retro" />
 
== Referensi ==
{{reflist}}
 
== Pranala luar ==
{{Commons|UnuntriumNihonium}}
* [http://www.webelements.com/webelements/elements/text/Uut/index.html WebElements.com - Uut]
* [http://www.radiochemistry.org/periodictable/elements/115.html Uut and Uup Add Their Atomic Mass to Periodic Table]
* [http://www.apsidium.com/elements/113.htm Apsidium - Ununtrium]
* [http://www-cms.llnl.gov/e113_115/images.html Discovery of Elements 113 and 115] {{Webarchive|url=https://web.archive.org/web/20050623012629/http://www-cms.llnl.gov/e113_115/images.html |date=2005-06-23 }}
* [http://physicsweb.org/articles/world/17/7/7 Superheavy elements]
 
Baris 31 ⟶ 85:
[[Kategori:Unsur kimia]]
[[Kategori:Fisika nuklir]]
[[Kategori:Unsur kimia sintetiksintetis]]
 
[[an:Ununtrio]]
[[ar:أنون تريوم]]
[[ast:Ununtriu]]
[[az:Ununtrium]]
[[be:Унунтрый]]
[[bn:ইউনুনট্রিয়াম]]
[[bs:Ununtrijum]]
[[ca:Ununtri]]
[[co:Ununtriu]]
[[cs:Ununtrium]]
[[cv:Унунтри]]
[[cy:Ununtriwm]]
[[da:Ununtrium]]
[[de:Ununtrium]]
[[el:Ουνούντριο]]
[[en:Ununtrium]]
[[eo:Ununtrio]]
[[es:Ununtrio]]
[[et:Ununtrium]]
[[fa:آن‌ان‌تریوم]]
[[fi:Ununtrium]]
[[fr:Ununtrium]]
[[fur:Ununtrium]]
[[gl:Ununtrio]]
[[gv:Oonoontrium]]
[[he:אונונטריום]]
[[hif:Ununtrium]]
[[hr:Ununtrij]]
[[hu:Ununtrium]]
[[it:Ununtrio]]
[[ja:ウンウントリウム]]
[[jv:Ununtrium]]
[[ko:우눈트륨]]
[[ku:Element 113]]
[[la:Ununtrium]]
[[lb:Ununtrium]]
[[lij:Ununtrio]]
[[lv:Ununtrijs]]
[[ml:അൺഅൺട്രിയം]]
[[nds:Ununtrium]]
[[nl:Ununtrium]]
[[nn:Ununtrium]]
[[no:Ununtrium]]
[[pl:Ununtrium]]
[[pt:Ununtrio]]
[[qu:Ununtriyu]]
[[ro:Ununtriu]]
[[ru:Унунтрий]]
[[scn:Ununtriu]]
[[sh:Ununtrijum]]
[[simple:Ununtrium]]
[[sk:Ununtrium]]
[[sr:Унунтријум]]
[[sv:Ununtrium]]
[[th:อูนอูนเทรียม]]
[[tr:Ununtriyum]]
[[ug:Ununtrium]]
[[uk:Унунтрій]]
[[vi:Ununtri]]
[[war:Ununtrium]]
[[xal:Унунтриум]]
[[yo:Ununtrium]]
[[zh:Uut]]
[[zh-yue:Uut]]