Metode prediktor–korektor: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
Tag: kemungkinan spam pranala VisualEditor |
||
(11 revisi perantara oleh 8 pengguna tidak ditampilkan) | |||
Baris 1:
{{rapikan}}
Dalam [[analisis numerik]], '''metode prediktor–korektor''' termasuk dalam [[algoritma]] yang dirancang untuk mengintegrasikan [[persamaan diferensial biasa]] - untuk menemukan fungsi yang tidak diketahui yang memenuhi persamaan diferensial yang diberikan. Algoritma tersebut diproses dalam dua langkah:
==Metode Prediktor-korektor==▼
# Langkah awal, "prediksi", dimulai dari fungsi yang ditempatkan ke nilai fungsi dan nilai turunan <!--pada kumpulan poin sebelumnya-->untuk mengekstrapolasi <!--("mengantisipasi")-->nilai fungsi ini pada titik baru berikutnya.
===metode Trapesium-Euler===▼
# Langkah "korektor", menyempurnakan perkiraan awal dengan menggunakan nilai fungsi yang diprediksi dan metode lain untuk menginterpolasi nilai fungsi yang tidak diketahui itu pada titik berikutnya<!--yang sama-->.
▲== Metode Prediktor-korektor ==
▲=== metode Trapesium-Euler ===
Metode-metode yang sudah dibahas pada bagian-bagian sebelumnya yaitu '''[[Metode Euler]]''' dan '''[[Runge-kutta]]''' merupakan metode satu langkah untuk menyeleseikan persamaan diferensial biasa.sekarang kita akan membahas metode multi langkah,untuk menghitung y<sub>k</sub> dengan menggunakan gradien-gradien f<sub>j</sub>,dengan j < k,yang sudah diperoleh sebelumnya.metode ini tidak dapat dimulai dengan sendirinya karena tergantung pada metode-metode satu langkah seperti <u>[[metode Euler]]</u> untuk mendapatkan beberapa gradien awal.
metode prediktor-korektor terdiri atas dua bagian:(1) bagian [https://prediktorangka.top/ prediktor],yang memprediksi y<sub>k</sub> dengan menggunakan gradien-gradien f<sub>j</sub>
<u>[[Metode Trapesium-Euler]]</u> menggunakan [[metode Euler]] sebagai
y<sub>k+1,0</sub>=y<sub>k,*</sub> +hf<sub>k,*</sub>
Baris 23 ⟶ 27:
persamaan korektor yang digunakan sebanyak yang diperlukan untuk mendapatkan keakuratan yang diinginkan. perhatikan bahwa dengan menggunakan persamaan Euler sebagai nilai awal,y<sub>k+,j</sub> dapat dihitung untuk j=1,2 ....dengan rumus trapesium.proses koreksi dapat dihentikan setelah iterasi ke-n(ditentukan)atau setelah |y<sub>k+1,j+1</sub>-y<sub>k+1,j</sub>|<€,untuk suatu nilai € yang ditentukan.
== Algoritma (Metode Trapesium Euler) ==
: menghitung hampiran penyeleseian masalah nilai awal y'=f(t,y) dengan y(t<sub>0</sub>)=y<sub>0</sub> pada [t<sub>0</sub>,b].
::'''INPUT''':n,t<sub>0</sub>,b,y<sub>0</sub>,€ dan fungsi f
Baris 47 ⟶ 51:
simpan y<sub>k</sub>=z<sub>0</sub>
3. '''
Baris 64 ⟶ 68:
===
a=1;b=2;h=0.1;y0=1;
xy=[a y0];
Baris 86 ⟶ 90:
2.0000 3.0735
===
a=1;b=2;h=0.1;t01=0.0001;
y=1;xy=[a y];
Baris 131 ⟶ 135:
kita amati bahwa pendekatan dengan metode euler lebih dekat ke nilai eksak sehingga mempunyai galat yang ledih kecil dibanding dengan pendekatan trapesium-euler,pendekatan trapesium-euler mempunyai nilai galat yang lebih besar
|