Limit fungsi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika |
|||
(31 revisi perantara oleh 18 pengguna tidak ditampilkan) | |||
Baris 7:
== Sejarah ==
Meskipun termasuk secara implisit dalam pengembangan kalkulus pada abad ke-17 dan 18, gagasan modern limit fungsi baru dibahas oleh [[Bernard Bolzano|Bolzano]], yang pada 1817, memperkenalkan dasar-dasar teknik [[epsilon-delta]].
[[Augustin Louis Cauchy|Cauchy]] membahas limit dalam karyanya ''Cours d'analyse'' (1821) dan tampaknya telah menyatakan intisari gagasan tersebut, tapi tidak secara sistematis.
▲Meskipun termasuk secara implisit dalam pengembangan kalkulus pada abad ke-17 dan 18, gagasan modern limit fungsi baru dibahas oleh [[Bernard Bolzano|Bolzano]], yang pada 1817, memperkenalkan dasar-dasar teknik [[epsilon-delta]]. <ref>[http://www-history.mcs.st-andrews.ac.uk/Biographies/Bolzano.html MacTutor History of Bolzano]</ref> Namun karyanya tidak diketahui semasa hidupnya.
▲[[Cauchy]] membahas limit dalam karyanya ''Cours d'analyse'' (1821) dan tampaknya telah menyatakan intisari gagasan tersebut, tapi tidak secara sistematis. <ref name="Miller">[http://web.archive.org/web/19981205110714/http://members.aol.com/jeff570/calculus.html Jeff Miller's history of math website.]</ref> Presentasi yang ketat terhadap khalayak ramai pertama kali diajukan oleh [[Karl Weirstrass|Weirstrass]] pada dasawarsa 1850-an dan 1860-an<ref>[http://www-history.mcs.st-andrews.ac.uk/Biographies/Weierstrass.html MacTutor History of Weierstrass.]</ref>, dan sejak itu telah menjadi metode baku untuk menerangkan limit.
Notasi tertulis menggunakan singkatan '''lim''' dengan anak panah diperkenalkan oleh [[G. H. Hardy|Hardy]] dalam bukunya ''A Course of Pure Mathematics'' pada tahun 1908.<ref name="Miller" />
Baris 18 ⟶ 17:
=== Fungsi pada garis [[bilangan riil]] ===
Bila ''f''
:<math> \lim_{x \to p}f(x) = L </math>
Baris 25 ⟶ 24:
=== Limit searah ===
[[Berkas:Upper semi.png|
▲[[Berkas:Upper semi.png|thumb|Limit saat: x → x<sub>0</sub><sup>+</sup> ≠ x → x<sub>0</sub><sup>-</sup>. Maka, limit x → x<sub>0</sub> tidak ada.]]
Masukan ''x'' dapat mendekati ''p'' dari atas (kanan di garis bilangan) atau dari bawah (kiri). Dalam hal ini limit masing-masingnya dapat ditulis sebagai
:<math> \lim_{x \to p^+}f(x) = L </math>
Baris 44 ⟶ 41:
=== Limit fungsi pada ketakhinggaan ===
▲[[Berkas:Limit-at-infinity-graph.png|thumb|250px| Limit fungsi ini ada pada ketakhinggaan.]]
Bila dua unsur, ketakhinggaan positif dan negatif {-∞, +∞}, ditambahkan pada garis bilangan riil, kita dapat mendefinisikan limit fungsi pada ketakhinggaan. Dua unsur tambahan ini bukanlah bilangan, namun berguna dalam memerikan kelakuan limit pada kalkulus dan analisis.
Baris 62 ⟶ 58:
== Rumus biasa ==
\lim\limits_{x \to p} & (f(x) + g(x)) &
\lim\limits_{x \to p} & (f(x) - g(x)) &
\lim\limits_{x \to p} & (f(x) \cdot g(x)) &
\lim\limits_{x \to p} & (f(x) / g(x)) &
\lim\limits_{x \to p} & (f(x))^n &= & \lim\limits_{x \to p} f(x))^n \\
\lim\limits_{x \to p} & \sqrt[n]{(f(x)} &= & \sqrt[n]{\lim\limits_{x \to p} f(x)} \\
\end{matrix}</math>
== Rumus ==
\lim\limits_{x \to 0} & \frac{x}{\sin x} & = 1 \\
\lim\limits_{x \to 0} & \frac{x}{\tan x} & = 1 \\
\lim\limits_{x \to 0} & \frac{\sin x}{x} & = 1 \\
\lim\limits_{x \to 0} & \frac{\tan x}{x} & = 1 \\
\lim\limits_{x \to \infty} & x \sin (\frac{1}{x}) & = 1 \\
\lim\limits_{x \to \infty} & x \tan (\frac{1}{x}) & = 1 \\
\lim\limits_{x \to 0} & \frac{ax}{\sin bx} & = \frac{a}{b} \\
\lim\limits_{x \to 0} & \frac{ax}{\tan bx} & = \frac{a}{b} \\
\lim\limits_{x \to 0} & \frac{\sin ax}{bx} & = \frac{a}{b} \\
\lim\limits_{x \to 0} & \frac{\tan ax}{bx} & = \frac{a}{b} \\
\lim\limits_{x \to \infty} & p^x & = 0, \qquad -1 < p < 1 \\
\lim\limits_{x \to \infty} & \frac {ax^m+b}{px^n+q} & = \frac{a}{p}, \qquad m=n \\
\lim\limits_{x \to \infty} & \sqrt{ax^2+bx+c} - \sqrt{px^2+qx+r} & = \frac{b-q}{2 \sqrt{a}}, \qquad a=p \\
\lim\limits_{x \to \infty} & \sqrt[3]{ax^3+bx^2+cx+d} - \sqrt[3]{px^3+qx^2+rx+s} & = \frac{b-q}{3 \sqrt[3]{a^2}}, \qquad a=p \\
\lim\limits_{x \to \infty} & (1 + \frac{1}{x})^x & = e \\
\lim\limits_{x \to 0} & (1 + x)^\frac{1}{x} & = e \\
\lim\limits_{x \to \infty} & (1 + \frac{a}{x})^{bx} & = e^{ab} \\
\lim\limits_{x \to 0} & (1 + ax)^\frac{b}{x} & = e^{ab} \\
\end{matrix}</math>
== Lihat pula ==
* [[Aturan L'Hôpital]]
== Rujukan ==
|