Bilangan segitiga kuadrat: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) pbtj |
Fitur saranan suntingan: 2 pranala ditambahkan. |
||
(8 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Nicomachus_theorem_3D.svg|ka|jmpl| Persegi yang panjang sisinya adalah bilangan segitiga dapat dipartisi menjadi persegi dan setengah persegi, yang luasnya
Dalam [[Teori bilangan|teorema bilangan]], jumlah <math>n </math> [[
[[ Identitas (matematika) |Identitas]] tersebut terkadang disebut juga '''teorema Nicomachus''', yang dinamai dari [[Nicomachus|Nicomachus dari Geresa]].
Baris 15 ⟶ 9:
Banyak matematikawan pada awalnya telah mempelajari dan memberikan bukti teorema Nicomachus. {{Harvard citation text|Stroeker|1995}} mengatakan bahwa "setiap siswa yang mempelajari teori bilangan ini, tentunya akan kagum dengan fakta ajaib ini". {{Harvard citation text|Pengelley|2002}} menemukan sumber untuk identitas yang tidak hanya dalam karya [[Nicomachus]] di [[Yordania|Jordan]] pada abad pertama M. Sumber identitas tersebut juga ditemukan dalam karya [[Aryabhata]] di [[India]] pada abad kelima, dan karya [[Al-Karaji]] sekitar 1000 di [[Iran|Persia]]. {{Harvard citation text|Bressoud|2004}} menyebutkan beberapa karya matematika pada rumus ini ditambahkan oleh [[ Al-Qabisi |Al-Qabisi]] di Arab pada abad kesepuluh, [[Lewi ben Gerson|Gersonides]] di Prancis sekitar tahun 1300, dan [[Nilakantha Somayaji]] di India sekitar 1500; ia menyalin kembali bukti visual Nilakantha.
== Nilai numerik;
[[Berkas:Grid_rectangle_count_puzzle.svg|jmpl|270x270px|Semua 36 ({{nowrap|1== (1 + 2 + 3)<sup>2</sup>}} = {{nowrap|1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup>}}) persegi panjang, berisi [[Square pyramidal number#Geometric enumeration|14 ({{nowrap|1== 1<sup>2</sup> + 2<sup>2</sup> + 3<sup>2</sup>}}) persegi]] (merah), dalam persegi 3×3, {{nowrap|di kisi (4×4)}}.]]
: [[0]],[[1]], [[9]], [[36]], [[100]], 225, 441, 784, 1296, 225, 3025, 4356, 084, 8281, .... {{OEIS|id=A000537}}.
Bilangan
{{Harvard citation text|Stein|1971}} mengamati bilangan tersebut bahwa bilangan ini juga menghitung jumlah persegi panjang dengan sisi horizontal dan vertikal dibentuk dalam sebuah <math>n \times n </math> [[ Kisi persegi |kisi]]. Sebagai contoh, titik-titik pada <math>4\times4</math> [[ Kisi persegi |kisi]], (atau kotak yang terdiri dari tiga kotak kecil di samping) dapat membentuk 36 persegi panjang yang berbeda Jumlah kuadrat dalam kisi kuadrat tersebut sama degan jumlah piramidal kuadrat. ▼
Identitas tersebut juga mengakui interpretasi probabilistik sebagai berikut. Misalkan <math>X,Y,Z,W \in \mathbb{Z} </math>. Keempat bilangan bulat tersebut dipilih secara independen dan beraturan secara acak antara <math>1</math> dan <math>n </math>. Kemudian, probabilitasnya adalah <math>W </math> menjadi yang paling terbesar dari keempat bilangan sama dengan probabilitas dimana kedua <math>Y </math> setidaknya sebesar <math>X </math> dan <math>W </math> setidaknya sebesar <math>Z </math>, yaitu: ▼
▲{{Harvard citation text|Stein|1971}} mengamati
▲Identitas tersebut juga
== Pembuktian ==
{{harvs|txt|first=Charles|last=Wheatstone|authorlink=Charles Wheatstone|year=1854}} memberikan pembuktian yang sangat sederhana, dengan memperluas setiap bilangan kubik dalam penjumlahan menjadi suatu himpunan dari bilangan ganjil yang berurutan. Wheatstone memulainya dengan memberikan identitas<math display="block">n^3 = \underbrace{\left(n^2-n+1\right) + \left(n^2-n+1+2\right) + \left(n^2-n+1+4\right)+ \cdots + \left(n^2+n-1\right)}_{n\text{ bilangan ganjil berurutan }}.</math>Identitas tersebut berkaitan dengan [[bilangan segitiga]] <math>T_n</math> yang disederhankan sebagai:<math display="block">n^3 =\sum _{k=T_{n-1}+1}^{T_{n}} (2 k-1).</math>Dengan demikian, tinambah di atas akan membentuk <math>n^3 </math> setelah semua bilangan segitiga membentuk nilai sebelumnya yang dimulai dari <math>1^3 </math> sampai <math>(n-1)^3</math> . Dengan menerapkan sifat tersebut, bersama dengan identitas terkenal lainnya:<math display="block">n^2 = \sum_{k=1}^n (2k-1),</math>maka akan menghasilkan bentuk berikut:<math display="block">
\begin{align}
\sum_{k=1}^n k^3 &= 1 + 8 + 27 + 64 + \cdots + n^3 \\
Baris 52 ⟶ 29:
&= (1 + 2 + \cdots + n)^2 \\
&= \bigg(\sum_{k=1}^n k\bigg)^2.
\end{align}</math>
{{harvtxt|Row|1893}} mendapatkan bukti lain dengan menjumlahkan bilangan-bilangan dalam suatu [[tabel perkalian]] persegi dengan dua cara berbeda. Jumlah dari baris ke-<math>i</math> adalah <math>i</math> dikalikan dengan bilangan segitiga, yang berarit bahwa jumlah dari semua baris adalah kuadrat dari bilangan segitiga. Cara lainnya adalah seseorang dapat menguraikan tabel menjadi barisan [[gnomon]] bersarang, yang masing-masing bilangan terdiri dari hasil kali yang lebih besar dari dua suku memberikan suatu nilai konstan. Jumlah dalam setiap gnomon adalah bilangan pangkat tiga, dan demikian bahwa jumlah seluruh tabel adalah jumlah bilangan pangkat tiga.
[[Berkas:Sum_of_cubes2.png
▲[[Berkas:Sum_of_cubes2.png|ka|jmpl| Secara visual menyatakan bahwa kuadrat dari bilangan segitiga sama dengan jumlah kubus. ]]
Dalam literatur matematika yang lebih baru, {{Harvard citation text|Edmonds|1957}} memberikan sebuah bukti menggunakan [[ Penjumlahan oleh bagian-bagian |penjumlahan oleh bagian-bagian]] . {{Harvard citation text|Stein|1971}} menggunakan interpretasi penghitungan persegi panjang pada bilangan-bilangan ini untuk membentuk bukti geometris pada identitas (lihat juga {{Harvard citation no brackets|Benjamin|Quinn|Wurtz|2006}} ); ia mengamati bahwa itu juga dapat dibuktikan dengan mudah (tetapi tidak informatif) dengan induksi, dan menyatakan bahwa {{Harvard citation text|Toeplitz|1963}} memberikan "bukti Arab kuno yang menarik". {{Harvard citation text|Kanim|2004}} memberikan bukti visual murni, {{Harvard citation text|Benjamin|Orrison|2002}} memberikan dua bukti tambahan, dan {{Harvard citation text|Nelsen|1993}} memberikan tujuh bukti geometris. ▼
▲Dalam literatur matematika yang
== Perumuman ==
{{harvtxt|Stroeker|1995}} mempelajari
== Referensi ==
{{Reflist}}
*{{citation|last1=Benjamin|first1=Arthur T.|author1-link=Arthur T. Benjamin|last2=Orrison|first2=M. E.|title=Two quick combinatorial proofs of <math>\textstyle \sum k^3 = {n+1\choose 2}^2</math>|journal=[[College Mathematics Journal]]|year=2002|volume=33|issue=5|pages=406–408|url=http://www.math.hmc.edu/~orrison/research/papers/two_quick.pdf|doi=10.2307/1559017|jstor=1559017}}.
*{{citation|doi=10.2307/27646391|title=Summing cubes by counting rectangles|url=http://www.math.hmc.edu/~benjamin/papers/rectangles.pdf|pages=387–389|issue=5|volume=37|year=2006|journal=[[College Mathematics Journal]]|first3=Calyssa|last1=Benjamin|last3=Wurtz|author2-link=Jennifer Quinn|first2=Jennifer J.|last2=Quinn|author1-link=Arthur T. Benjamin|first1=Arthur T.|jstor=27646391}}.
|