Bilangan segitiga kuadrat: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k fix |
Fitur saranan suntingan: 2 pranala ditambahkan. |
||
Baris 17:
Bilangan segitiga kuadrat tersebut dapat dipandang sebagai [[bilangan figurasi]], suatu perumuman hiperpiramidal empat dimensi dari [[bilangan segitiga]] dan [[bilangan piramidal persegi]].
{{Harvard citation text|Stein|1971}} mengamati bahwa bilangan segitiga kuadrat juga menghitung jumlah [[persegi panjang]] dengan sisi horizontal dan vertikal dibentuk dalam sebuah <math>n \times n </math> [[ Kisi persegi |kisi]]. Sebagai contoh, titik-titik dari <math>4\times4</math> kisi (atau persegi yang terdiri dari tiga persegi kecil di samping) dapat membentuk 36 persegi panjang yang berbeda. Dengan cara yang serupa, jumlah bilangan kuadrat dalam kisi persegi tersebut dihitung dengan bilangan piramidal kuadrat.
Identitas tersebut juga mengatakan pandangan probabilistik sebagai berikut: Misalkan <math>W, X, Y, Z </math> menyatakan [[bilangan bulat]] yang dipilih secara independen dan seragam di sebarang bilangan di antara <math>1</math> dan <math>n </math>. Maka, probabilitas mengatakan bahwa <math>W </math> adalah bilangan bulat terbesar dari keempat bilangan yang sama dengan probabilitas yang mengatakan <math>Y </math> setidaknya sebesar <math>X </math>, dan <math>W </math> setidaknya sebesar <math>Z </math><math display="block">\mathbf{P}({\max(X,Y,Z) \leq W}) = \mathbf{P}(\{X \leq Y\} \cap \{Z \leq W\}). </math>Probabilitas masing-masing adalah ruas kiri dan ruas kanan pada identitas Nichomacus, yang dinormalisasi untuk membuat probabilitas dengan membagi kedua ruas oleh <math>n^4</math>.{{Butuh rujukan}}
== Pembuktian ==
|