Optimisasi multiobjektif: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Halaman ini adalah hasil terjemahan dari artikel en:Multi-objective_optimization (oldid: 1048767229). Lihat sejarahnya untuk atribusi.
 
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(4 revisi perantara oleh 2 pengguna tidak ditampilkan)
Baris 39:
=== Keuangan ===
 
Dalam bidang [[keuangan]], sebuah masalah yang umum adalah bagaimana memilih fortofolio ketika terdapat dua objektif yang saling konflik — keinginan untuk mendapatkan ekspektasi pengembalian portofolio setinggi mungkin, juga keinginan untuk memiliki [[Financial risk|resikorisiko keuangan]] (umumnya dinyatakan dalam [[Simpangan baku|standar deviasi]] dari pengembalian portofolio) sekecil mungkin. Masalah ini umum direpresentasikan dengan [[kurva portofolio]] yang menunjukkan kombinasi terbaik dari resikorisiko dan ekspektasi pengembalian, dan preferensi dari investor terkait berbagai kombinasi resikorisiko dan ekspektasi pengembalian. Masalah mengoptimisasi fungsi nilai ekspektasi ([[Momen (matematika)|momen]] pertama) dan standar deviasi (akar kuadrat dari momen kedua) dari pengembalian portofolio dikenal dengan [[model keputusan dua-momen]].
 
=== Kontrol optimal ===
Baris 57:
* meminimumkan besar biaya investasi dan perawatan untuk gudang penyimpanan
 
Optimisasi desain multiobjektif juga diterapkan pada sistem-sistem teknik seperti mengoptimasi tata letak kabinet kontrol,<ref>{{cite arxiv|last1=Pllana|first1=Sabri|last2=Memeti|first2=Suejb|last3=Kolodziej|first3=Joanna|title=Customizing Pareto Simulated Annealing for Multi-objective Optimization of Control Cabinet Layout|eprint=1906.04825|class=cs.OH|year=2019}}</ref> optimisasi bentuk ''airfoil'',<ref>{{cite journal|last1=Nguyen|first1=Hoang Anh|last2=van Iperen|first2=Zane|last3=Raghunath|first3=Sreekanth|last4=Abramson|first4=David|last5=Kipouros|first5=Timoleon|last6=Somasekharan|first6=Sandeep|date=2017|title=Multi-objective optimisation in scientific workflow|journal=Procedia Computer Science|volume=108|pages=1443–1452|doi=10.1016/j.procs.2017.05.213|hdl=1826/12173|doi-access=free}}</ref> desain semikonduktor nano-[[CMOS]],<ref>{{Cite journal|last1=Ganesan|first1=T.|last2=Elamvazuthi|first2=I.|last3=Vasant|first3=P.|date=2015-07-01|title=Multiobjective design optimization of a nano-CMOS voltage-controlled oscillator using game theoretic-differential evolution|journal=Applied Soft Computing|volume=32|pages=293–299|doi=10.1016/j.asoc.2015.03.016}}</ref> desain [[System on a chip|''system on chip'']], desain sistem irigasi dengan tenaga (listrik) surya,<ref>{{Cite book|last1=Ganesan|first1=T.|last2=Elamvazuthi|first2=I.|last3=Shaari|first3=Ku Zilati Ku|last4=Vasant|first4=P.|date=2013-01-01|title=Hypervolume-Driven Analytical Programming for Solar-Powered Irrigation System Optimization|publisher=Springer International Publishing|isbn=978-3-319-00541-6|editor-last=Zelinka|editor-first=Ivan|series=Advances in Intelligent Systems and Computing|pages=147–154|doi=10.1007/978-3-319-00542-3_15|editor-last2=Chen|editor-first2=Guanrong|editor-last3=Rössler|editor-first3=Otto E.|editor-last4=Snasel|editor-first4=Vaclav|editor-last5=Abraham|editor-first5=Ajith}}</ref> optimisasi sistem dan bentuk cetakan pasir,<ref>{{Cite book|last1=Ganesan|first1=T.|last2=Elamvazuthi|first2=I.|last3=Shaari|first3=Ku Zilati Ku|last4=Vasant|first4=P.|date=2013-01-01|title=Multiobjective Optimization of Green Sand Mould System Using Chaotic Differential Evolution|publisher=Springer Berlin Heidelberg|isbn=978-3-642-45317-5|editor-last=Gavrilova|editor-first=Marina L.|series=Lecture Notes in Computer Science|pages=145–163|doi=10.1007/978-3-642-45318-2_6|editor-last2=Tan|editor-first2=C. J. Kenneth|editor-last3=Abraham|editor-first3=Ajith}}</ref><ref>{{cite journal|last1=Surekha|first1=B.|last2=Kaushik|first2=Lalith K.|last3=Panduy|first3=Abhishek K.|last4=Vundavilli|first4=Pandu R.|last5=Parappagoudar|first5=Mahesh B.|date=2011-05-07|title=Multi-objective optimization of green sand mould system using evolutionary algorithms|journal=The International Journal of Advanced Manufacturing Technology|volume=58|issue=1–4|pages=9–17|doi=10.1007/s00170-011-3365-8|issn=0268-3768|s2cid=110315544}}</ref> desain mesin,<ref>{{Cite web|title=MultiObjective Optimization in Engine Design Using Genetic Algorithms to Improve Engine Performance {{!}} ESTECO|url=http://www.esteco.com/modefrontier/multiobjective-optimization-engine-design-using-genetic-algorithms-improve-engine-perfo|website=www.esteco.com|access-date=2015-12-01|archive-date=2017-04-10|archive-url=https://web.archive.org/web/20170410045646/http://www.esteco.com/modefrontier/multiobjective-optimization-engine-design-using-genetic-algorithms-improve-engine-perfo|dead-url=yes}}</ref><ref>{{cite book|last1=Courteille|first1=E.|last2=Mortier|first2=F.|last3=Leotoing|first3=L.|last4=Ragneau|first4=E.|date=2005-05-16|url=https://hal.archives-ouvertes.fr/hal-00913315/file/SAE_HAL.pdf|title=SAE Technical Paper Series|location=Warrendale, PA|volume=1|chapter=Multi-Objective Robust Design Optimization of an Engine Mounting System|doi=10.4271/2005-01-2412|chapter-url=http://papers.sae.org/2005-01-2412/}}</ref> juga desain penyebaran sensor<ref>{{cite journal|last1=Domingo-Perez|first1=Francisco|last2=Lazaro-Galilea|first2=Jose Luis|last3=Wieser|first3=Andreas|last4=Martin-Gorostiza|first4=Ernesto|last5=Salido-Monzu|first5=David|last6=Llana|first6=Alvaro de la|date=April 2016|title=Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization|journal=Expert Systems with Applications|volume=47|pages=95–105|doi=10.1016/j.eswa.2015.11.008}}</ref> dan desain ''controller'' yang optimal.<ref>{{Cite journal|last1=Bemporad|first1=Alberto|last2=Muñoz de la Peña|first2=David|date=2009-12-01|title=Multiobjective model predictive control|journal=Automatica|volume=45|issue=12|pages=2823–2830|doi=10.1016/j.automatica.2009.09.032}}</ref><ref>{{cite journal|last=Panda|first=Sidhartha|date=2009-06-01|title=Multi-objective evolutionary algorithm for SSSC-based controller design|journal=Electric Power Systems Research|volume=79|issue=6|pages=937–944|doi=10.1016/j.epsr.2008.12.004}}</ref>
 
=== Optimisasi proses ===
Optimisasi multiobjektif semakin sering digunakan dalam [[teknik kimia]] dan [[manufaktur]]. Pada tahun 2009, Fiandaca dan Fraga menggunakan algoritma genetik multiobjektif (''multi-objective genetic algorithm'', MOGA) untuk mengoptimisasi proses [[adsorpsi ayunan tekanan]]. Masalah ini melibatkan proses memaksimumkan jumlah (''recovery)'' nitrogen yang didapatkan sekaligus tingkat kemurnian nitrogen. Hasil yang didapatkan metode ini memberikan perkiraan batas Pareto yang bagus dengan tarik-ulur antar objektif yang dapat diterima.<ref>{{Cite journal|last1=Fiandaca|first1=Giovanna|last2=Fraga|first2=Eric S.|last3=Brandani|first3=Stefano|year=2009|title=A multi-objective genetic algorithm for the design of pressure swing adsorption|url=http://www.research.ed.ac.uk/portal/en/publications/a-multiobjective-genetic-algorithm-for-the-design-of-pressure-swing-adsorption(b0048cd0-b338-4263-954b-c28ad4058666)/export.html|journal=Engineering Optimization|volume=41|issue=9|pages=833–854|doi=10.1080/03052150903074189|access-date=2015-12-01|s2cid=120201436}}</ref> Beberapa masalah lain yang dikerjakan dengan menggunakan optimisasi multiobjektif diantaranya: pengawetan makanan secara termal,<ref>{{cite journal|last1=Sendín|first1=José Oscar H.|last2=Alonso|first2=Antonio A.|last3=Banga|first3=Julio R.|date=2010-06-01|title=Efficient and robust multi-objective optimization of food processing: A novel approach with application to thermal sterilization|journal=Journal of Food Engineering|volume=98|issue=3|pages=317–324|doi=10.1016/j.jfoodeng.2010.01.007|hdl=10261/48082|hdl-access=free}}</ref> dan teknik pangan secara umum,<ref>{{Cite journal|author=Abakarov. A., Sushkov. Yu., Mascheroni. R.H.|year=2012|title=Multi-criteria optimization and decision-making approach for improving of food engineering processes.|url=http://tomakechoice.com/paper/MCDM&OD_IJFS.pdf|journal=International Journal of Food Studies|volume=2|pages=1–21|doi=10.7455/ijfs/2.1.2013.a1|access-date=2021-12-27|archive-date=2018-12-21|archive-url=https://web.archive.org/web/20181221185608/http://tomakechoice.com/paper/MCDM%26OD_IJFS.pdf|dead-url=yes}}</ref> ekstraksi bahan kimia,<ref>{{Cite book|last1=Ganesan|first1=Timothy|last2=Elamvazuthi|first2=Irraivan|last3=Vasant|first3=Pandian|last4=Shaari|first4=Ku Zilati Ku|date=2015-03-23|title=Multiobjective Optimization of Bioactive Compound Extraction Process via Evolutionary Strategies|publisher=Springer International Publishing|isbn=978-3-319-15704-7|editor-last=Nguyen|editor-first=Ngoc Thanh|series=Lecture Notes in Computer Science|pages=13–21|doi=10.1007/978-3-319-15705-4_2|editor-last2=Trawiński|editor-first2=Bogdan|editor-last3=Kosala|editor-first3=Raymond}}</ref> proses produksi bioetanol,<ref>{{Cite book|last=Mehdi|first=Khosrow-Pour|date=2014-06-30|url=https://books.google.com/books?id=L6N_BAAAQBAJ|title=Contemporary Advancements in Information Technology Development in Dynamic Environments|publisher=IGI Global|isbn=9781466662537}}</ref> juga masalah alokasi pembagian kerja bagi karyawan dan mesin.<ref>{{Cite journal|last1=Pearce|first1=Margaret|last2=Mutlu|first2=Bilge|last3=Shah|first3=Julie|last4=Radwin|first4=Robert|date=2018|title=Optimizing Makespan and Ergonomics in Integrating Collaborative Robots Into Manufacturing Processes|journal=IEEE Transactions on Automation Science and Engineering|language=en-US|volume=15|issue=4|pages=1772–1784|doi=10.1109/tase.2018.2789820|issn=1545-5955|s2cid=52927442|doi-access=free}}</ref>
 
=== Manajemen sumber daya radio ===
Baris 68:
 
=== Inspeksi infrakstruktur ===
Inspeksi infrastruktur secara otomatis memiliki potensi untuk mengurangi biaya, resikorisiko dan dampak terhadap lingkungan, juga memastikan perawatan berkala bagi aset yang diperiksa. Umumnya, tugas inspeksi dianggap sebagai masalah optimisasi satu-objektif, dimana seseorang perlu meminimumkan energi atau waktu yang dibutuhkan dalam menginspeksi keseluruhan struktur.<ref name="GalceranCarreras2013">{{cite journal|last1=Galceran|first1=Enric|last2=Carreras|first2=Marc|year=2013|title=A survey on coverage path planning for robotics|journal=Robotics and Autonomous Systems|volume=61|issue=12|pages=1258–1276|doi=10.1016/j.robot.2013.09.004|issn=09218890|citeseerx=10.1.1.716.2556}}</ref> Namun pada struktur bangunan yang kompleks, melakukan pemeriksaan yang menyeluruh adalah hal yang sulit/tidak mungkin untuk dilakukan. Karenanya membuat rencana inspeksi lebih baik dianggap sebagai masalah optimisasi multiobjektif, dengan tujuan untuk memaksimumkan total daerah cakupan inspeksi sekaligus meminimumkan waktu dan biaya. Penelitian terkini menyimpulkan perencanaan inspeksi secara multiobjektif memiliki potensi memberikan solusi jauh lebih baik, ketimbang metode tradisional, pada infrastruktur yang kompleks.<ref name="EllefsenLepikson2017">{{cite journal|last1=Ellefsen|first1=K.O.|last2=Lepikson|first2=H.A.|last3=Albiez|first3=J.C.|year=2019|title=Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures|url=https://www.researchgate.net/publication/318893583|journal=Applied Soft Computing|volume=61|pages=264–282|arxiv=1901.07272|bibcode=2019arXiv190107272O|doi=10.1016/j.asoc.2017.07.051|issn=15684946|hdl=10852/58883|s2cid=6183350}}</ref>
 
== Solusi ==
Baris 153:
* [[Algoritma evolusioner]] yang berisi algoritma untuk menghasilkan sebuah himpunan solusi optimal Pareto.
 
Beberapa contoh optimisasi matematika berlandaskan metode a posteriori antara lain: Model ''Normal Boundary Intersection'' (NBI),<ref name="doi10.1137/S1052623496307510">{{Cite journal|last1=Das|first1=I.|last2=Dennis|first2=J. E.|year=1998|title=Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems|journal=SIAM Journal on Optimization|volume=8|issue=3|pages=631|doi=10.1137/S1052623496307510|hdl=1911/101880|hdl-access=free}}</ref> ''Modified Normal Boundary Intersection'' (NBIm) <ref name="S. Motta">{{cite journal|last=S. Motta|first=Renato|author2=Afonso, Silvana M. B.|author3=Lyra, Paulo R. M.|date=8 January 2012|title=A modified NBI and NC method for the solution of N-multiobjective optimization problems|journal=Structural and Multidisciplinary Optimization|volume=46|issue=2|pages=239–259|doi=10.1007/s00158-011-0729-5|s2cid=121122414}}</ref> ''Normal Constraint'' (NC),<ref name="ReferenceA">{{cite journal|last1=Messac|first1=A.|last2=Ismail-Yahaya|first2=A.|last3=Mattson|first3=C.A.|year=2003|title=The normalized normal constraint method for generating the Pareto frontier|journal=Structural and Multidisciplinary Optimization|volume=25|issue=2|pages=86–98|doi=10.1007/s00158-002-0276-1|author-link1=Achille Messac|s2cid=58945431}}</ref><ref name="ReferenceB">{{cite journal|last1=Messac|first1=A.|last2=Mattson|first2=C. A.|year=2004|title=Normal constraint method with guarantee of even representation of complete Pareto frontier|journal=AIAA Journal|volume=42|issue=10|pages=2101–2111|bibcode=2004AIAAJ..42.2101M|doi=10.2514/1.8977}}</ref> ''Successive Pareto Optimization'' (SPO),<ref name="ReferenceC">{{cite journal|last1=Mueller-Gritschneder|first1=Daniel|last2=Graeb|first2=Helmut|last3=Schlichtmann|first3=Ulf|year=2009|title=A Successive Approach to Compute the Bounded Pareto Front of Practical Multiobjective Optimization Problems|journal=SIAM Journal on Optimization|volume=20|issue=2|pages=915–934|doi=10.1137/080729013}}</ref> dan ''Directed Search Domain'' (DSD).<ref name="EU11">{{cite journal|last1=Erfani|first1=Tohid|last2=Utyuzhnikov|first2=Sergei V.|year=2011|title=Directed Search Domain: A Method for Even Generation of Pareto Frontier in Multiobjective Optimization|url=http://personalpages.manchester.ac.uk/staff/S.Utyuzhnikov/Papers/DSDreprint.pdf|journal=Journal of Engineering Optimization|volume=43|issue=5|pages=1–18|doi=10.1080/0305215X.2010.497185|access-date=October 17, 2011|s2cid=33631133}}</ref>. Model-model tersebut menyelesaikan masalah optimisasi multiobjektif dengan membangun beberapa skalarisasi. Solusi-solusi dari setiap skalarisasi merupakan solusi optimal Pareto, baik secara lokal atau secara global. Skalarisasi yang digunakan pada metode NBI, NBIm, NC, dan DSD, dikonstruksi untuk menemukan titik-titik Pareto yang terdistribusi secara merata. Titik-titik tersebut juga perlu menghasilkan aproksimasi bagus ke himpunan titik-titik Pareto asli yang terdistribusi secara merata. <!-- The scalarizations of the NBI, NBIm, NC and DSD methods are constructed with the target of obtaining evenly distributed Pareto points that give a good evenly distributed approximation of the real set of Pareto points.
 
Saya sangat kesulitan memahami maksud kalimat ini, malangnya saya juga malas untuk membaca paper-paper referensinya. -->
Baris 175:
* ''S-Metric Selection Evolutionary Multi-Objective Algorithm'' (SMS-EMOA)<ref name="SMS-EMOA">{{Cite journal|last1=Beume|first1=N.|last2=Naujoks|first2=B.|last3=Emmerich|first3=M.|year=2007|title=SMS-EMOA: Multiobjective selection based on dominated hypervolume|journal=European Journal of Operational Research|volume=181|issue=3|pages=1653|doi=10.1016/j.ejor.2006.08.008}}</ref>
* ''Approximation-Guided'' Evolution<ref name="AGE">{{Cite journal|last1=Bringmann|first1=Karl|last2=Friedrich|first2=Tobias|last3=Neumann|first3=Frank|last4=Wagner|first4=Markus|year=2011|title=Approximation-Guided Evolutionary Multi-Objective Optimization|journal=IJCAI|doi=10.5591/978-1-57735-516-8/IJCAI11-204}}</ref>
* ''Reactive Search Optimization'' (menggunakan pemelajaran mesin untuk mengubah strategi dan objektif),<ref>{{cite book|last=Battiti|first=Roberto|author2=Mauro Brunato|author3=Franco Mascia|year=2008|title=Reactive Search and Intelligent Optimization|publisher=[[Springer Verlag]]|isbn=978-0-387-09623-0}}</ref><ref>{{cite book|last=Battiti|first=Roberto|author2=Mauro Brunato|year=2011|url=http://www.reactivebusinessintelligence.com/|title=Reactive Business Intelligence. From Data to Models to Insight.|location=Trento, Italy|publisher=Reactive Search Srl|isbn=978-88-905795-0-9|access-date=2021-10-11|archive-date=2011-03-15|archive-url=https://web.archive.org/web/20110315221838/http://www.reactivebusinessintelligence.com/|dead-url=yes}}</ref> diterapkan dalam [[LIONsolver]]
* [[Algoritma Benson]] untuk [[pemrograman linear multiobjektif]] dan untuk pemrograman konveks multiobjektif
* [[Optimisasi kawanan partikel|Optimisasi kawanan partikel multiobjektif]]
Baris 207:
 
== Visualisasi batas Pareto ==
Visualisasi batas Pareto adalah salah satu teknik preferensi a posteriori (''a posteriori preference techniques)'' dalam optimisasi multiobjektif. Teknik ini adalah sebuah kelas berisi beberapa teknik penting dalam optimisasi multiobjektif.<ref name="Miettinen1999" /> Umumnya teknik preferensi ini terdiri dari empat tahap: (1) aproksimasi batas Pareto dengan komputer; (2) pengambil keputusan mempelajari solusi-(solusi) pada batas Pareto yang dihasilkan, (3) dan mengidentifikasi solusi terbaik; (4) komputer memberikan keputusan optimal Pareto, yang nilainya sama dengan solusi terbaik yang diidentifikasi oleh pengambil keputusan. Dari sudut pandang pengambil keputusan, tahap kedua teknik ini adalah yang paling rumit. Ada dua pendekatan utama untuk menginformasikan solusi kepada pengambil keputusan. Pertama, dengan menyajikan solusi-solusi pada batas Pareto dalam bentuk daftar,<ref name="BensonSayin1997">{{cite journal|last1=Benson|first1=Harold P.|last2=Sayin|first2=Serpil|year=1997|title=Towards finding global representations of the efficient set in multiple objective mathematical programming|url=http://repository.bilkent.edu.tr/bitstream/11693/25666/1/Towards%20finding%20global%20representations%20of%20the%20efficient%20set%20in%20multiple%20objective%20mathematical%20programming.pdf|journal=Naval Research Logistics|volume=44|issue=1|pages=47–67|doi=10.1002/(SICI)1520-6750(199702)44:1<47::AID-NAV3>3.0.CO;2-M|issn=0894-069X|hdl=11693/25666}}</ref>, atau kedua, dengan menggunakan peta panas (''heatmap)''.<ref name="Pryke,Mostaghim,Nazemi">{{cite book|last=Pryke|first=Andy|author2=Sanaz Mostaghim|author3=Alireza Nazemi|year=2007|title=Heatmap Visualisation of Population Based Multi Objective Algorithms|journal=Evolutionary Multi-Criterion Optimization|isbn=978-3-540-70927-5|series=Lecture Notes in Computer Science|volume=4403|pages=361–375|doi=10.1007/978-3-540-70928-2_29}}</ref>
 
=== Visualisasi masalah biobjektif ===