'''Teori BCS''' adalah teori yang menjelaskan tentang pemasangan dua [[partikel]] dalam [[inti atom]] yang saling terhubung pada waktu yang bersamaan. Teori ini dikemukakan pada tahun 1957 oleh [[John Bardeen|Bardeen]], Cooper, dan [[John Robert Schrieffer|Schrieffer]]. Melalui teori BCS, diketahui bahwa perubahan [[energi]] total dalam sistem yang lebih kecil dipengaruhi oleh fungsi [[gelombang]] dan tingkat energi tertentu dalam pemodelan kulit inti. Gambaran tentang hubungan antarpartikel dalam teori BCS dapat dijelaskan melalui [[Matriks (matematika)|matriks]] interaksi dan persamaan Hamiltonian.<ref>{{Cite journal|last=Nugraha|first=Alpi Mahisha|date=2017|title=Efek pairing pada Isotop Sn (N>82) dalam Teori BCS Menggunakan Sembilan Tingkat|url=https://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/download/1290/1410|journal=Faktor Exacta|volume=10|issue=2|pages=102|doi=|issn=2502-339X}}</ref>
'''Teori BCS''' telah sukses menjelaskan [[superkonduktor konvensional]], kemampuan beberapa [[logam]] pada [[suhu]] rendah untuk mengkonduksi [[listrik]] tanpa [[hambatan listrik|hambatan]]. Teori BCS memandang [[superkonduktivitas]] sebagai sebuah efek [[mekanika kuantum]] makroskopik. Dia mengusulkan bahwa [[elektron]] dengan [[spin (fisika)|spin]] berlawanan dapat menjadi berpasangan, membentuk pasangan Cooper.
== Pemanfaatan ==
Dalam banyak superkonduktor, interaksi menarik antara elektron (dibutuhkan untuk berpasangan) dibawa tidak langsung oleh interaksi antara elektron dan "lattice" kristal bergetar ([[phonon]]).
Teori BCS dapat digunakan untuk menjelaskan variasi nilai [[arus listrik]] pada saat nilai [[hambatan listrik]] sama dengan nol. Teori BCS menjelaskan bahwa besarnya arus masukan dan [[dimensi]] [[penghantar listrik]] menjadi penentu lamanya waktu yang diperlukan untuk pemutusan pasangan [[elektron]]. Pemutusan rantai pasangan elektron akan semakin cepat jika arus yang melewati penghantar listrik semakin besar dan sebaliknya.<ref>{{Cite journal|last=Adi et al.|first=|date=2000|title=Faktor Koreksi Dimensi Sampel pada Sifat Listrik Superkonduktor YBa2Cu3O7-x dengan menggunakan metode Four Point Probe|url=http://repo-nkm.batan.go.id/5785/1/PAPER1.pdf|journal=Majalah Batan|volume=33|issue=1|pages=22|access-date=2020-10-04|archive-date=2020-10-07|archive-url=https://web.archive.org/web/20201007184602/http://repo-nkm.batan.go.id/5785/1/PAPER1.pdf|dead-url=yes}}</ref>
''== Referensi orisinil'':==▼
<!--
<references />
In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the [[phonon]]s). Roughly speaking the picture is the following:
{{fisika-stub}}
[[ CategoryKategori:Superkonduktivitas]] ▼
An electron moving through a conductor will cause a slight increase in concentration of positive charges in the lattice around it; this increase in turn can attract another electron. In effect, the two electrons are then held together with a certain binding energy. If this binding energy is higher than the energy provided by kicks from oscillating atoms in the conductor (which is true at low temperatures), then the electron pair will stick together and resist all kicks, thus not experiencing resistance.
BCS theory was developed in 1957 by [[John Bardeen]], [[Leon Neil Cooper|Leon Cooper]], and [[John Robert Schrieffer|Robert Schrieffer]], who received the [[Nobel Prize]] for Physics in 1972 as a result.
In 1986, "[[high-temperature superconductivity]]" was discovered (i.e. superconductivity at temperatures
considerably above the previous limit of about 30 K; up
to about 130 K).
It is believed that at these temperatures other effects are at play; these effects are not yet fully understood.
(It is possible that these unknown effects also control superconductivity even at low temperatures for some
materials)
An excellent introduction to BCS theory and related areas of [[condensed matter physics]] at the graduate level is [[John Robert Schrieffer|Schrieffer]]'s book, ''Theory of Superconductivity'', ISBN 0-7382-0120-0.
== More details ==
BCS theory starts from the assumption that there is some attraction between electrons, which can overcome the [[Coulomb repulsion]]. In most materials (in low temperature superconductors), this attraction is brought about indirectly by the coupling of electrons to the [[crystal lattice]] (as explained above). However, the results of BCS theory do ''not'' depend on the origin of the attractive interaction. Note that the original results of BCS (discussed below)
were describing an "s-wave" superconducting state, which is the rule among low-temperature superconductors but is not realized in many "unconventional superconductors", such as the "d-wave" high-temperature superconductors.
Extensions of BCS theory exist to describe these other cases, although they are insufficient to completely describe the observed features of high-temperature superconductivity.
BCS were able to give an approximation for the quantum-mechanical state of the
system of (attractively interacting) electrons inside the metal. This state is
now known as the "BCS state". Whereas in the normal metal electrons move independently, in the BCS state they are bound into "Cooper pairs" by the attractive interaction.
BCS have derived several important theoretical predictions that are independent
of the details of the interaction (note that the quantitative predictions mentioned below hold only for sufficiently weak attraction between the electrons, which is however fulfilled for many low temperature superconductors
- the so-called "weak-coupling case"). These have been confirmed in numerous experiments:
* Since the electrons are bound into Cooper pairs, a finite amount of energy is needed to break these apart into two independent electrons. This means there is an "energy gap" for "single-particle excitation", unlike in the normal metal (where the state of an electron can be changed by adding an arbitrarily small amount of energy). This energy gap is highest at low temperatures but vanishes at the transition temperature when superconductivity ceases to exist. BCS theory correctly predicts the variation of this gap with temperature. It also gives an expression that shows how the gap grows with the strength of the attractive interaction and the (normal phase) "density of states" at the [[Fermi energy]]. Furthermore, it describes how the "density of states" is changed on entering the superconducting state, where there are no electronic states any more at the Fermi energy. The energy gap is most directly observed in tunneling experiments and in reflection of microwaves from the superconductor.
* The ratio between the value of the energy gap at zero temperature and the value of the superconducting transition temperature (expressed in energy units) takes the universal value of 3.5, independent of material.
* Due to the energy gap, the specific heat of the superconductor is suppressed strongly ([[exponential decay |exponentially]]) at low temperatures, there being no thermal excitations left. However, before reaching the transition temperature, the specific heat of the superconductor becomes even higher than that of the normal conductor (measured immediately above the transition) and the ratio of these two values is found to be universally given by 2.5.
* BCS theory correctly predicts the [[Meissner effect]], i.e. the expulsion of a [[magnetic field]] from the superconductor and the variation of the penetration depth (the extent of the screening currents flowing below the metal's surface) with temperature.
* It also describes the variation of the critical magnetic field (above which the superconductor can no longer expel the field but becomes normalconducting) with temperature. BCS theory relates the value of the critical field at zero temperature to the value of the transition temperature and the density of states at the Fermi energy.
-->
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Theory of Superconductivity",
''Phys. Rev.'' '''108''' (5), 1175 (1957).
▲[[Category:Superkonduktivitas]]
[[ca:Teoria BCS]]
[[de:BCS-Theorie]]
[[en:BCS theory]]
[[es:Teoría BCS]]
[[it:Coppia di Cooper]]
[[ja:BCS理論]]
[[pl:Teoria BCS]]
|