Teorema Taylor: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
|||
(5 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 20:
Suku sisa adalah perbedaan antara fungsi dan polinomial hampirannya:
:<math>R_n(x) = f(x) - \left(f(a) + f'(a)(x-a) +\frac{f''(a)}{2!}(x-a)^2 +\dots \frac{f^{(n)}(a)}{n!}(x-a)^n\right).</math>
Baris 151 ⟶ 150:
::<math> = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n \cdot \frac{G(x)-G(a)}{G'(\xi)}.</math>
== Teorema Taylor dalam satu variabel nyata ==
=== Pernyataan teorema ===
Pernyataan dari versi paling dasar dari teorema Taylor adalah sebagai berikut:
{{kutipan|'''Teorema Taylor.'''<ref>{{ catatan|first1=Angelo|last1=Genocchi|first2= Giuseppe|last2=Peano|title=Calcolo differenziale e principii di calcolo integrale|location=(N. 67, pp. XVII–XIX)|publisher=Fratelli Bocca ed.|year=1884}}</ref><ref>{{Citation | last1=Spivak | first1=Michael | author1-link=Michael Spivak | title=Calculus | publisher=Publish or Perish | location=Houston, TX | edition=3rd | isbn=978-0-914098-89-8 | year=1994| page=383}}</ref><ref>{{springer|title=Taylor formula|id=p/t092300}}</ref> Let ''k'' ≥ 1 jika nilai pada [[integer]] dan biarkan nilai [[Fungsi (matematika)|fungsi]] {{nowrap|''f'' : '''R''' → '''R'''}} jika nilai ''k'' kali ini [[Fungsi yang dapat dibedakan|dapat dibedakan]] pada titik tersebut {{nowrap|''a'' ∈ '''R'''}}. Setelah itu fungsi pada {{nowrap|''h<sub>k</sub>'' : '''R''' → '''R'''}}, dirumuskan:
:<math> f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x-a)^k + h_k(x)(x-a)^k,</math>
<math>\mbox{dan}\quad\lim_{x\to a}h_k(x)=0</math>. Hal ini disebut juga '''[[Peano]]'''.}}
Hasil teorema yang muncul dalam teorema Taylor adalah '''''k''''' urutan pada Teorema Taylor, yaitu:
:<math>P_k(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x-a)^k </math>
dari fungsi ''f'' pada titik ''a''. Teorema Taylor adalah Teorema yang digunakan dalam arti, jika terdapat suatu fungsi {{nowrap|''h<sub>k</sub>'' : '''R''' → '''R'''}} dan ''k'' ke order teorema ``p'' dengan sedemikian rupa
:<math> f(x) = p(x) + h_k(x)(x-a)^k, \quad \lim_{x\to a}h_k(x)=0,</math>
setelah itu ''p'' = ''P<sub>k</sub>''. Teorema Taylor menggambarkan perilaku asimtotik dari '''istilah sisa'''
:<math> \ R_k(x) = f(x) - P_k(x),</math>
Salah satu [[kesalahan aproksimasi]] saat mendekati nilai ''f'' dengan teorema taylor. Menggunakan [[notasi o kecil]], pernyataan dalam teorema Taylor dibaca sebagai berikut
:<math>R_k(x) = o(|x-a|^{k}), \quad x\to a.</math>
=== Rumus eksplisit untuk sisa ===
Di bawah asumsi keteraturan yang lebih kuat pada nilai ''f'' ada beberapa rumus yang tepat untuk istilah sisa pada ''R<sub>k</sub>'' dari teorema taylor, yang paling relevan adalah sebagai berikut.
{{kutipan|'''Bentuk nilai rata-rata dari sisa.''' Mari mencari nilai {{nowrap|''f'' : '''R''' → '''R'''}} berada pada nilai ''k'' + 1 saat kita [[Fungsi yang dapat dibedakan|dapat membedakan]] pada [[interval terbuka]] dengan ''f''<sup>(''k'')</sup> saat fungsi [[fungsi berkelanjutan|kontinu]] pada [[interval tertutup]] antara ''a'' serta ''x''.<ref><!--The hypothesis of ''f''<sup>(''k'')</sup> being [[continuous function|continuous]] on the [[closed interval|''closed'' interval]] between ''a'' and ''x'' is ''not'' redundant. Although ''f'' being ''k'' + 1 times [[Differentiable function|differentiable]] on the [[open interval]] between ''a'' and ''x'' does imply that ''f''<sup>(''k'')</sup> is [[continuous function|continuous]] on the [[open interval|''open'' interval]] between ''a'' and ''x'', it does ''not'' imply that ''f''<sup>(''k'')</sup> is [[continuous function|continuous]] on the [[closed interval|''closed'' interval]] between ''a'' and ''x'', i.e. it does not imply that ''f''<sup>(''k'')</sup> is [[continuous function|continuous]] at the ''endpoints'' of that interval. Consider, for example, the [[Function (mathematics)|function]] {{nowrap|''f'' : ''[0,1]'' → '''R'''}} defined to equal <math> \sin(1/x)</math> on <math>(0,1]</math> and with <math>f(0)=0</math>. This is not [[continuous function|continuous]] at ''0'', but is [[continuous function|continuous]] on <math>(0,1)</math>. Moreover, one can show that this [[Function (mathematics)|function]] has an [[Antiderivative|antiderivative]]. Therefore that [[Antiderivative|antiderivative]] is [[Differentiable function|differentiable]] on <math>(0,1)</math>, its [[Derivative|derivative]] (the function ''f'') is [[continuous function|continuous]] on the [[open interval|''open'' interval]] <math>(0,1)</math>, but its [[Derivative|derivative]] ''f'' is ''not'' [[continuous function|continuous]] on the [[closed interval|''closed'' interval]] <math>[0,1]</math>. So the theorem would not apply in this case.--></ref> Kemudian
:<math> R_k(x) = \frac{f^{(k+1)}(\xi_L)}{(k+1)!} (x-a)^{k+1} </math>
untuk beberapa bilangan real pada nilai ''ξ<sub>L</sub>'' di antara nilai ''a'' dan ''x''. Hal tersebut adalah dari '''[[Joseph Louis Lagrange|Lagrange]]'''<ref>{{harvnb|Kline|1998|loc=§20.3}}; {{harvnb|Apostol|1967|loc=§7.7}}.</ref> pada sisa pernyataan.
Demikian pula,
:<math> R_k(x) = \frac{f^{(k+1)}(\xi_C)}{k!}(x-\xi_C)^k(x-a) </math>
untuk beberapa bilangan real pada ''ξ<sub>C</sub>'' di antara ''a'' dan ''x''. Hal tersebut adalah bentuk dari '''[[Augustin Louis Cauchy|Cauchy]]'''<ref>{{harvnb|Apostol|1967|loc=§7.7}}.</ref> dari sisa pernyataan.
}}
Perbaikan teorema Taylor tersebut terbiasa dibuktikan menggunakan [[teorema nilai rata-rata]], dari mana namanya. Hal tersebut ekspresi serupa lainnya. Contoh dari ''G''(''t'') kontinu pada interval tertutup dan dapat dibedakan dengan turunan pada interval terbuka di antaranya ''a'' dan ''x'', maka
:<math> R_k(x) = \frac{f^{(k+1)}(\xi)}{k!}(x-\xi)^k \frac{G(x)-G(a)}{G'(\xi)} </math>
Untuk beberapa nomor ''ξ'' di antara ''a'' dan ''x''. Versi tersebut mencakup bentuk Lagrange dan Cauchy sisanya sebagai kasus khusus dan dibuktikan dengan penggunaan di bawah [[Teorema Nilai Rata-rata#Teorema Nilai Rata-rata Cauchy|Teorema Nilai Rata-rata Cauchy]].
Pernyataan dalam bentuk integral dari sisa lebih maju dari yang sebelumnya, dan membutuhkan pemahaman tentang [[Lebesgue integral|teori integrasi Lebesgue]] untuk pencarian penuh. Namun, itu berlaku juga dalam arti [[integral Riemann]] asalkan nilai (''k'' + 1) keturunan dari ''f'' kontinu pada interval tertutup [''a'',''x''].
{{kutipan|'''Bentuk integral dari sisanya.'''<ref>{{harvnb|Apostol|1967|loc=§7.5}}.</ref> Mari ''f''<sup>(''k'')</sup> cara menjadikan [[bilangan berkelanjutan]] pada [[interval tertutup]] antara ''a'' dan ''x''. Setelah itu
:<math> R_k(x) = \int_a^x \frac{f^{(k+1)} (t)}{k!} (x - t)^k \, dt. </math>}}
<!--Due to [[absolutely continuous|absolute continuity]] of ''f''<sup>(''k'')</sup> on the [[closed interval]] between ''a'' and ''x'', its derivative ''f''<sup>(''k''+1)</sup> exists as an ''L''<sup>1</sup>-function, and the result can be proven by a formal calculation using [[fundamental theorem of calculus]] and [[integration by parts]].-->
=== Estimasi untuk sisanya ===
<!--It is often useful in practice to be able to estimate the remainder term appearing in the Taylor approximation, rather than having an exact formula for it. Suppose that ''f'' is {{nowrap|(''k'' + 1)}}-times continuously differentiable in an interval ''I'' containing ''a''. Suppose that there are real constants ''q'' and ''Q'' such that
:<math>q\le f^{(k+1)}(x)\le Q</math>
throughout ''I''. Then the remainder term satisfies the inequality<ref>{{harvnb|Apostol|1967|loc=§7.6}}</ref>
:<math>q\frac{(x-a)^{k+1}}{(k+1)!}\le R_k(x)\le Q\frac{(x-a)^{k+1}}{(k+1)!},</math>
if {{nowrap|''x'' > ''a''}}, and a similar estimate if {{nowrap|''x'' < ''a''}}. This is a simple consequence of the Lagrange form of the remainder. In particular, if
:<math>|f^{(k+1)}(x)|\le M</math>
on an interval {{nowrap|''I'' {{=}} (''a'' − ''r'',''a'' + ''r'')}} with some <math>r>0</math> , then
:<math>|R_k(x)|\le M\frac{|x-a|^{k+1}}{(k+1)!}\le M\frac{r^{k+1}}{(k+1)!}</math>
for all {{nowrap|''x''∈(''a'' − ''r'',''a'' + ''r'').}} The second inequality is called a [[uniform convergence|uniform estimate]], because it holds uniformly for all ''x'' on the interval {{nowrap|(''a'' − ''r'',''a'' + ''r'').}}-->
=== Contoh ===
<!--[[File:Expanimation.gif|thumb|400px|right|Approximation of ''e''<sup>''x''</sup> (blue) by its Taylor polynomials ''P<sub>k</sub>'' of order ''k'' = 1,...,7 centered at ''x'' = 0 (red).]] Suppose that we wish to find the approximate value of the function {{nowrap|''f''(''x'') {{=}} ''e''<sup>''x''</sup>}} on the interval {{nowrap|[−1,1]}} while ensuring that the error in the approximation is no more than 10<sup>−5</sup>. In this example we pretend that we only know the following properties of the exponential function:
:<math>(*) \qquad e^0=1, \qquad \frac{d}{dx} e^x = e^x, \qquad e^x>0, \qquad x\in\mathbb{R}.</math>
From these properties it follows that {{nowrap|''f''<sup>(''k'')</sup>(''x'') {{=}} ''e''<sup>''x''</sup>}} for all ''k'', and in particular, {{nowrap|''f''<sup>(''k'')</sup>(0) {{=}} 1}}. Hence the ''k''-th order Taylor polynomial of ''f'' at 0 and its remainder term in the Lagrange form are given by
:<math> P_k(x) = 1+x+\frac{x^2}{2!}+\cdots+\frac{x^k}{k!}, \qquad R_k(x)=\frac{e^\xi}{(k+1)!}x^{k+1},</math>
where ''ξ'' is some number between 0 and ''x''. Since ''e''<sup>''x''</sup> is increasing by (*), we can simply use ''e<sup>x</sup>'' ≤ 1 for ''x'' ∈ [−1, 0] to estimate the remainder on the subinterval [−1, 0]. To obtain an upper bound for the remainder on [0,1], we use the property {{nowrap|''e<sup>ξ</sup>''<''e<sup>x</sup>''}} for 0<''ξ<x'' to estimate
:<math> e^x = 1 + x + \frac{e^\xi}{2}x^2 < 1 + x + \frac{e^x}{2}x^2, \qquad 0 < x\leq 1 </math>
using the second order Taylor expansion. Then we solve for ''e<sup>x</sup>'' to deduce that
:<math> e^x \leq \frac{1+x}{1-\frac{x^2}{2}} = 2\frac{1+x}{2-x^2} \leq 4, \qquad 0 \leq x\leq 1 </math>
simply by maximizing the [[numerator]] and minimizing the [[denominator]]. Combining these estimates for ''e<sup>x</sup>'' we see that
:<math> |R_k(x)| \leq \frac{4|x|^{k+1}}{(k+1)!} \leq \frac{4}{(k+1)!}, \qquad -1\leq x \leq 1, </math>
so the required precision is certainly reached, when
:<math> \frac{4}{(k+1)!} < 10^{-5} \quad \Longleftrightarrow \quad 4\cdot 10^5 < (k+1)! \quad \Longleftrightarrow \quad k \geq 9. </math>
(See [[factorial]] or compute by hand the values 9!=362 880 and 10!=3 628 800.) As a conclusion, Taylor's theorem leads to the approximation
:<math> e^x = 1+x+\frac{x^2}{2!} + \cdots + \frac{x^9}{9!} + R_9(x), \qquad |R_9(x)| < 10^{-5}, \qquad -1\leq x \leq 1. </math>
For instance, this approximation provides a [[decimal representation|decimal expression]] ''e'' ≈ 2.71828, correct up to five decimal places.-->
== Catatan kaki ==
Baris 156 ⟶ 259:
== Rujukan ==
* {{cite book|title = Calculus|url = https://archive.org/details/calculus01apos|authorlink=Tom Apostol|first = Tom|last = Apostol|publisher = Jon Wiley & Sons, Inc.|year = 1967|isbn = 0-471-00005-1}}
* {{cite book|title = Calculus: An Intuitive and Physical Approach|url = https://archive.org/details/calculusintuitiv0000klin_o9z9|first = Morris|last = Klein|publisher = Dover|year = 1998|isbn = 0-486-40453-6}}
== Pranala luar ==
* {{en}}[http://cinderella.de/files/HTMLDemos/2C02_Taylor.html Trigonometric Taylor Expansion] Applet demonstrasi interaktif
* {{en}}[http://numericalmethods.eng.usf.edu/mws/gen/01aae/mws_gen_aae_txt_taylorseries.pdf Taylor Series Revisited] {{Webarchive|url=https://web.archive.org/web/20081010090303/http://numericalmethods.eng.usf.edu/mws/gen/01aae/mws_gen_aae_txt_taylorseries.pdf |date=2008-10-10 }} pada [http://numericalmethods.eng.usf.edu Holistic Numerical Methods Institute]
[[Kategori:Kalkulus]]
|