Faktor persekutuan terbesar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
InternetArchiveBot (bicara | kontrib)
Rescuing 7 sources and tagging 0 as dead.) #IABot (v2.0.9.5
(7 revisi perantara oleh 5 pengguna tidak ditampilkan)
Baris 1:
Dalam [[matematika]], khususnya [[teori bilangan]], [['''faktor persekutuan terbesar]]''' atau dikenal juga sebagai [[persekutuan bilangan terbesar]] (dilambangkan <math>\operatorname{FPB}</math><ref name=":4">{{Cite webnews|last=Itsnaini|first=Faqihah Muharroroh|title=Apa Perbedaan KPK dan FPB? Ini Penjelasannya|url=https://www.detik.com/edu/detikpedia/d-5379049/apa-perbedaan-kpk-dan-fpb-ini-penjelasannya|websitework=detikedu[[Detik.com|detikcom]]|language=id-ID|access-date=2021-11-14|archive-date=2022-09-28|archive-url=https://web.archive.org/web/20220928031226/https://www.detik.com/edu/detikpedia/d-5379049/apa-perbedaan-kpk-dan-fpb-ini-penjelasannya|dead-url=no}}</ref> atau <math>\operatorname{PBT}</math><ref>Suci Yuniati, [https://jurnalbeta.ac.id/index.php/betaJTM/article/download/74/81/295 MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN MENGGUNAKAN METODE “PEBI”] {{Webarchive|url=https://web.archive.org/web/20220527054533/https://jurnalbeta.ac.id/index.php/betaJTM/article/download/74/81/295 |date=2022-05-27 }}, hlm. 158</ref> dalam [[bahasa Indonesia]], dan <math>\gcd</math> dalam [[bahasa Inggris]], [[Daftar singkatan matematis|abreviasi]] dari kata ''greatest common divisor''<ref>{{Cite web|title=Definition of greatest common divisor {{!}} Dictionary.com|url=https://www.dictionary.com/browse/greatest-common-divisor|website=www.dictionary.com|language=en|access-date=2021-11-14|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324101637/https://www.dictionary.com/browse/greatest-common-divisor|dead-url=no}}</ref>) terhadap bilangan adalah [[bilangan bulat]] terbesar yang membagi setiap bilangan bulat. Sebagai contoh, diberikan bilangan bulat <math>12</math> dan <math>20</math>. Maka, <math>\operatorname{FPB}(12,20) = 4</math>. Mengenai cara-cara dan metode akan dijelaskan di bawah.
{{Under construction}}
Dalam [[matematika]], khususnya [[teori bilangan]], [[faktor persekutuan terbesar]] atau dikenal juga sebagai [[persekutuan bilangan terbesar]] (dilambangkan <math>\operatorname{FPB}</math><ref name=":4">{{Cite web|last=Itsnaini|first=Faqihah Muharroroh|title=Apa Perbedaan KPK dan FPB? Ini Penjelasannya|url=https://www.detik.com/edu/detikpedia/d-5379049/apa-perbedaan-kpk-dan-fpb-ini-penjelasannya|website=detikedu|language=id-ID|access-date=2021-11-14}}</ref> atau <math>\operatorname{PBT}</math><ref>Suci Yuniati, [https://jurnalbeta.ac.id/index.php/betaJTM/article/download/74/81/295 MENENTUKAN KELIPATAN PERSEKUTUAN TERKECIL (KPK) DAN FAKTOR PERSEKUTUAN TERBESAR (FPB) DENGAN MENGGUNAKAN METODE “PEBI”], hlm. 158</ref> dalam bahasa Indonesia, dan <math>\gcd</math> dalam bahasa Inggris, [[Daftar singkatan matematis|abreviasi]] dari kata ''greatest common divisor''<ref>{{Cite web|title=Definition of greatest common divisor {{!}} Dictionary.com|url=https://www.dictionary.com/browse/greatest-common-divisor|website=www.dictionary.com|language=en|access-date=2021-11-14}}</ref>) terhadap bilangan adalah [[bilangan bulat]] terbesar yang membagi setiap bilangan bulat. Sebagai contoh, diberikan bilangan bulat <math>12</math> dan <math>20</math>. Maka, <math>\operatorname{FPB}(12,20) = 4</math>. Mengenai cara-cara dan metode akan dijelaskan di bawah.
 
Gagasan faktor persekutuan terbesar dapat diperluas melalui polinomial, lihat [[faktor persekutuan terbesar polinomial]] atau [[persekutuan bilangan terbesar polinomial]] untuk melihat lebih lanjut.
 
== Notasi ==
Untuk <math>a</math> dan <math>b</math> bilangan bulat sembarang, notasi faktor persekutuan terbesar dinotasikan sebagai <math>\operatorname{FPB}(a,b)</math> atau <math>\operatorname{PBT}(a,b)</math>. Dalam versi bahasa Inggris, dinotasikan sebagai <math>\gcd(a,b)</math> atau <math>\operatorname{GCD}(a,b)</math>. Ada beberapa penulisan notasi faktor persekutuan terbesar, yaitu <math>\operatorname{g.c.d}(a,b)</math> atau <math>(a,b)</math>.<ref name=":0">{{Cite web|last=Weisstein|first=Eric W.|title=Greatest Common Divisor|url=https://mathworld.wolfram.com/GreatestCommonDivisor.html|website=mathworld.wolfram.com|language=en|access-date=2021-11-20|archive-date=2023-04-06|archive-url=https://web.archive.org/web/20230406035526/https://mathworld.wolfram.com/GreatestCommonDivisor.html|dead-url=no}}</ref>
 
== Definisi ==
Misalkan <math>a</math> dan <math>b</math> adalah dua bilangan bulat yang diberikan. Misalkan <math>d </math> membagi <math>a</math> dan <math>b</math> dan <math>d</math> [[bilangan asli]] terbesar, maka faktor persekutuan terbesar terhadap bilangan bulat <math>a</math> dan <math>b</math> adalah<ref>{{Cite web|date=2017-09-20|title=8.1: The Greatest Common Divisor|url=https://math.libretexts.org/Bookshelves/Mathematical_Logic_and_Proof/Book%3A_Mathematical_Reasoning__Writing_and_Proof_(Sundstrom)/8%3A_Topics_in_Number_Theory/8.1%3A_The_Greatest_Common_Divisor|website=Mathematics LibreTexts|language=en|access-date=2021-11-21|archive-date=2021-11-21|archive-url=https://web.archive.org/web/20211121014446/https://math.libretexts.org/Bookshelves/Mathematical_Logic_and_Proof/Book:_Mathematical_Reasoning__Writing_and_Proof_(Sundstrom)/8:_Topics_in_Number_Theory/8.1:_The_Greatest_Common_Divisor|dead-url=no}}</ref>
 
{{Equation box 1
Baris 37 ⟶ 36:
* Untuk sebarang bilangan bulat positif <math>a,b</math>, <math>\operatorname{FPB}(a,b) = b</math> jika dan hanya jika <math>b \mid a</math>.
* Untuk sebarang bilangan bulat positif <math>a,b,d</math>, <math>\operatorname{FPB}(ad,bd) = d \cdot \operatorname{FPB}(a,b)</math>.
 
* <math>\operatorname{FPB}(a,0) = \operatorname{FPB}(0,a) = |a|</math>, sifat ini sangat penting dalam kalkulasi [[algoritme Euklides]]
 
Baris 64 ⟶ 62:
== Koprima ==
{{Main|Koprima (bilangan)}}
Dua buah bilangan dikatakan [[Koprima (bilangan)|koprima]], atau [[relatif prima]], atau [[saling prima]] [[jika dan hanya jika]] faktor persekutuan terbesar dari kedua bilangan tersebut bernilai 1.<ref name=":0" />
 
== Penerapan ==
=== Menyederhanakan pecahan ===
Salah satu penerapan terhadap faktor persekutuan terbesar adalah menyederhanakan pecahan<ref>{{Cite web|title=Greatest Common Factor|url=https://www.mathsisfun.com/greatest-common-factor.html|website=www.mathsisfun.com|access-date=2021-11-21|archive-date=2005-10-29|archive-url=https://web.archive.org/web/20051029072949/https://www.mathsisfun.com/greatest-common-factor.html|dead-url=no}}</ref>. Sebagai contoh, tinjau pecahan <math>\frac{4}{8}</math>. Kita dapat sederhanakan pecahan ini dengan menggunakan faktor persekutuan terbesar. Faktor persekutuan terbesar dari <math>4</math> dan <math>8</math> adalah <math>\operatorname{FPB}(4,8) = 2</math>. Kita tuliskan sebagai
:<math>\frac{4}{8} = \frac{2 \times 2}{2 \times 4} = \frac{1}{2}</math>.
 
Baris 77 ⟶ 75:
|indent =:
|title=
|equation = <math>\operatorname{KPK}(a,b) = \frac{ab}{\operatorname{FPB}(a,b)}</math>.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Least Common Multiple|url=https://mathworld.wolfram.com/LeastCommonMultiple.html|website=mathworld.wolfram.com|language=en|access-date=2021-11-21|archive-date=2023-05-16|archive-url=https://web.archive.org/web/20230516001830/https://mathworld.wolfram.com/LeastCommonMultiple.html|dead-url=no}}</ref>
|cellpadding= 6
|border