Getaran: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Rachmat-bot (bicara | kontrib)
k clean up, replaced: dimana → di mana
InternetArchiveBot (bicara | kontrib)
Rescuing 3 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(18 revisi perantara oleh 14 pengguna tidak ditampilkan)
Baris 1:
{{terjemah|Inggris}}
{{Mekanika klasik}}
[[Berkas:Drum vibration mode21.gif|thumbjmpl|Salah satu mode getaran [[gendang]]]]
'''Getaran''' adalah suatu gerak bolak-balik di sekitar kesetimbangan. Kesetimbangan di sini maksudnya adalah keadaan di mana suatu benda berada pada posisi diam jika tidak ada [[gaya]] yang bekerja pada benda tersebut. Getaran mempunyai [[amplitudo]] (jarak simpangan terjauh dengan titik tengah) yang sama.
'''Getaran''' adalah [[gerak]] yang terjadi secara bolak-balik di sekitar [[kesetimbangan]]. Syarat terjadinya getaran ialah [[benda]] mengalami kondisi diam apabila tidak menerima gaya gerak. Selain itu, jarak simpangan terjauh yang timbul secara bolak-balik akibat getaran, selalu sama bila diukur dari titik tengah.<ref>{{Cite book|last=Putra, V. G. V.|first=|date=2017|url=https://www.researchgate.net/profile/Valentinus_Putra2/publication/327858097_PENGANTAR_FISIKA_DASAR/links/5ba9a3b892851ca9ed237c0f/PENGANTAR-FISIKA-DASAR.pdf|title=Pengantar Fisika Dasar|location=Sleman|publisher=CV. Mulia Jaya Publisher|isbn=978-602-72713-6-4|pages=89|url-status=live|access-date=2021-01-27|archive-date=2020-10-13|archive-url=https://web.archive.org/web/20201013091143/https://www.researchgate.net/profile/Valentinus_Putra2/publication/327858097_PENGANTAR_FISIKA_DASAR/links/5ba9a3b892851ca9ed237c0f/PENGANTAR-FISIKA-DASAR.pdf|dead-url=no}}</ref>
 
== Jenis getaran ==
Baris 14 ⟶ 15:
=== Getaran bebas tanpa peredam ===
 
[[Berkas:Mass spring.svg|200px|rightka|thumbjmpl|Model massa-pegas sederhanal]]
 
Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang memengaruhi massa (getaran bebas).
Baris 36 ⟶ 37:
:<math>m \ddot{x} + k x = 0.</math>
 
[[Berkas:Simple harmonic oscillator.gif|thumbjmpl|100px|rightka|Gerakan harmonik sederhana sistem benda-pegas]]
 
Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh ''A'' kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:
Baris 50 ⟶ 51:
</math>
 
Catatan: [[frekuensi sudut]] <math>\omega</math> (<math>\omega=2 \pi f</math>) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namuntetapi besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan [[Hertz|Hz]]) ketika menyatakan frekuensi sistem.
 
Bila massa dan kekakuan (tetapan ''k'') diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.
Baris 56 ⟶ 57:
=== Getaran bebas dengan redaman ===
 
[[Berkas:Mass spring damper.svg|200px|rightka|Mass Spring Damper Model]]
 
Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam [[fluida]] benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) ''c'' ini dinamakan koefisien peredam, dengan satuan N s/m (SI)
Baris 69 ⟶ 70:
:<math>m \ddot{x} + { c } \dot{x} + {k } x = 0.</math>
 
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namuntetapi pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik '''redaman kritis'''. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
 
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
Baris 84 ⟶ 85:
Solusi sistem kurang redam pada model massa-pegas-peredam adalah
 
:<math>x(t)=X e^{-\zeta \omega_n t} \cos({\sqrt{1-\zeta^2} \omega_n t - \phi}) , \ \ \omega_n= 2\pi f_n </math>
 
 
Nilai ''X'', amplitudo awal, dan <math> \phi </math>, [[Fase (gelombang)|ingsutan fase]], ditentukan oleh panjang regangan pegas.
 
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namuntetapi frekuensi osilasi berbeda daripada kasus tidak teredam.
 
Frekuensi dalam hal ini disebut "frekuensi alamiah teredam", ''f<sub>d</sub>'', dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
Baris 95 ⟶ 96:
:<math>f_d= \sqrt{1-\zeta^2} f_n </math>
 
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namuntetapi untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.
 
<!--Grafik di samping menampilkan bagaimana nisbah redaman sebesar 0,1 dan 0,3 akan memengaruhi bagaimana sistem akan bergetar seiring berjalannya waktu. Yang sering dilakukan dalam praktik adalah mengukur getaran bebas setelah sebuah pukulan (misalnya dengan palu), dan kemudian menentukan frekuensi alamiah sistem dengan mengukur laju osilasi, serta nisbah redaman dengan mengukur laju peluruhan. Frekuensi alamiah dan nisbah peredaman tidak hanya penting dalam getaran bebas, tetapi juga mencirikan bagaimana sistem akan berkelakuan pada getaran paksa. -->
Baris 124 ⟶ 125:
:<math>r=\frac{f}{f_n}</math>
 
The phase shift , <math>\phi</math>, is defined by following formula.
 
:<math>\phi= \arctan {\left (\frac{2 \zeta r}{1-r^2} \right)} </math>
Baris 171 ⟶ 172:
The phase of the FRF was also presented earlier as:
 
:<math>\angle H(\omega)= \arctan {\left (\frac{2 \zeta r}{1-r^2} \right)}. </math>
 
For example, let us calculate the FRF for a mass-spring-damper system with a mass of 1 kg, spring stiffness of 1.93 N/mm and a damping ratio of 0.1. The values of the spring and mass give a natural frequency of 7 Hz for this specific system. If we apply the 1 Hz square wave from earlier we can calculate the predicted vibration of the mass. The figure illustrates the resulting vibration. It happens in this example that the fourth harmonic of the square wave falls at 7 Hz. The frequency response of the mass-spring-damper therefore outputs a high 7 Hz vibration even though the input force had a relatively low 7 Hz harmonic. This example highlights that the resulting vibration is dependent on both the forcing function and the system that the force is applied to.
Baris 181 ⟶ 182:
 
-->
== Referensi ==
<references />
 
== Pranala luar ==
* {{en}}Hyperphysics Educational Website, [http://hyperphysics.phy-astr.gsu.edu/hbase/permot.html#permot''Oscillation/Vibration Concepts''] {{Webarchive|url=https://web.archive.org/web/20230605171506/http://hyperphysics.phy-astr.gsu.edu/hbase/permot.html#permot |date=2023-06-05 }}
* {{en}}Thermotron Industries, [http://www.thermotron.com/resources/vibration_handbook.html''Fundamentals of Electrodynamic Vibration Testing Handbook''] {{Webarchive|url=https://web.archive.org/web/20070824053405/http://www.thermotron.com/resources/vibration_handbook.html |date=2007-08-24 }}
* {{en}}Nelson Publishing, [http://www.evaulationengineering.com/ ''Evaluation Engineering Magazine''] {{Webarchive|url=https://web.archive.org/web/20071031003535/http://www.evaulationengineering.com/ |date=2007-10-31 }}
* {{en}}[http://structdynviblab.mcgill.ca/index.html Structural Dynamics and Vibration Laboratory of McGill University] {{Webarchive|url=https://web.archive.org/web/20220204022357/http://structdynviblab.mcgill.ca/index.html |date=2022-02-04 }}
* {{en}}[http://web.mat.bham.ac.uk/C.J.Sangwin/Teaching/CircWaves/waves.html Normal vibration modes of a circular membrane] {{Webarchive|url=https://web.archive.org/web/20050518033722/http://web.mat.bham.ac.uk/C.J.Sangwin/Teaching/CircWaves/waves.html |date=2005-05-18 }}
 
[[Kategori:Mekanika]]
[[Kategori:TeknikRekayasa struktur]]