Grup titik: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Membuat halaman baru, terdapat Bagian yang belum diterjemahkan dan terdapat masalah Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Rescuing 4 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
(6 revisi perantara oleh 5 pengguna tidak ditampilkan) | |||
Baris 1:
{| class=wikitable align=right width=400
|- valign=top
|[[Gambar:Flag of Hong Kong.svg|240px]]<
|[[Berkas:Yin and Yang.svg|160px]]<
|}
Dalam [[geometri]], '''grup titik''' adalah [[grup (matematika)
: ''y'' = ''Mx''
dimana asal adalah titik tetap. Elemen kelompok titik dapat berupa [[Rotasi (matematika)
Kelompok titik diskrit di lebih dari satu dimensi datang dalam keluarga tak berhingga, tetapi dari [[teorema pembatasan kristalografi]] dan [[Grup ruang#Teorema Bieberbach.27s
== Grup titik kiral dan akiral, grup refleksi ==
Baris 27:
!Group
![[Notasi Coxeter|Coxeter]]
! [[Diagram Coxeter–Dynkin|Diagram Coxeter]]
! Urutan
!Deskripsi
|- align=center
||''C''<sub>1</sub>||[ ]<sup>+</sup>|| ||1||
|- align=center
||''D''<sub>1</sub>||[ ]||{{CDD|node|}}||2||
|}
Baris 49 ⟶ 47:
|-
! Grup
! [[Notasi Hermann–Mauguin
! [[Orbifold]]
! [[Notasi Coxeter
! Urutan
! Deskripsi
Baris 79 ⟶ 77:
! Group
! colspan=2 | [[Grup Coxeter]]
! colspan=2 | [[Diagram Coxeter–Dynkin
! Urutan
! Subgrup
Baris 118 ⟶ 116:
| D<sub>''n''</sub>×2|| I<sub>2</sub>(n)×2||{{brackets|n}} = [2n]||{{CDD|node|n|node}}||{{CDD|node_c1|n|node_c1}} = {{CDD|node_c1|2x|n|node}}||4''n''
|}
=== Tiga dimensi ===
Baris 133 ⟶ 130:
|+ Domain fundamental berwarna genap/ganjil dari grup reflektif
|-
!C<sub>1v</sub><
!C<sub>2v</sub><
!C<sub>3v</sub><
!C<sub>4v</sub><
!C<sub>5v</sub><
!C<sub>6v</sub><
!...
|-
Baris 149 ⟶ 146:
|-
|-
!D<sub>1h</sub><
!D<sub>2h</sub><
!D<sub>3h</sub><
!D<sub>4h</sub><
!D<sub>5h</sub><
!D<sub>6h</sub><
!...
|-
Baris 165 ⟶ 162:
|[[Gambar:Spherical dodecagonal bipyramid2.png|80px]]
|-
!T<sub>d</sub><
!O<sub>h</sub><
!I<sub>h</sub><
|-
|[[Gambar:Tetrahedral reflection domains.png|80px]]
Baris 180 ⟶ 177:
|-
! [[Notasi Hermann–Mauguin|Intl]<sup>*</sup>
! Geo<
! [[Notasi Orbifold
! [[Notasi Schönflies
! [[John Horton Conway
! [[Notasi Coxeter
! Urutan
|- align=center
Baris 197 ⟶ 194:
| {{overline|1}}
| {{overline|22}}
| ×1
| C<SUB>i</SUB> = S<SUB>2</SUB>
| CC<SUB>2</SUB>
Baris 211 ⟶ 208:
| 2
|- align=center valign=top
| 2<
| {{overline|2}}<
| 22<
| C<SUB>2</SUB><
| C<SUB>2</SUB><
| [2]<sup>+</sup><
| 2<
|- align=center valign=top
| mm2<
| 2<
| *22<
| C<SUB>2v</SUB><
| CD<SUB>4</SUB><
| [2]<
| 4<
|- align=center valign=top
| 2/m<
| {{overline|2}} 2<
| 2*<
| C<SUB>2h</SUB><
| ±C<SUB>2</SUB><
| [2,2<sup>+</sup>]<
| 4<
|- align=center valign=top
| {{overline|4}}<
| {{overline|4 2}}<
| 2×<br>3×<br>4×<br>5×<br>6×<br>n×
| S<SUB>4</SUB><
| CC<SUB>4</SUB><
| [2<sup>+</sup>,4<sup>+</sup>]<
| 4<
|}
|
{| class="wikitable"
|-
! [[Notasi Herman–Maugin|
! Geo
! [[Orbifold|Intl]]
! Geo
! [[Notasi Orbifold|Orbifold]]
! [[Notasi Schönflies
! [[John Horton Conway
! [[Notasi Coxeter
! Urutan
|- align=center valign=top
| 222<
| {{overline|2}} {{overline|2}}<
| 222<
| D<SUB>2</SUB><
| D<SUB>4</SUB><
| [2,2]<sup>+</sup><
| 4<
|- align=center valign=top
| mmm<
| 2 2<
| *222<
| D<SUB>2h</SUB><
| ±D<SUB>4</SUB><
| [2,2]<
| 8<
|- align=center valign=top
| {{Overline|4}}2m<
| 4 {{overline|2}}<
| 2*2<
| D<SUB>2d</SUB><
| ±D<SUB>4</SUB><
| [2<sup>+</sup>,4]<
| 8<
|- align=center
| 23
Baris 344 ⟶ 341:
Kelompok titik refleksi, ditentukan oleh 1 sampai 3 bidang cermin, juga dapat diberikan oleh [[grup Coxeter]] dan polihedra terkait. Grup [3,3] dapat digandakan, ditulis sebagai {{brackets | 3,3}}, memetakan cermin pertama dan terakhir satu sama lain, menggandakan simetri menjadi 48, dan isomorfik ke grup [4,3].
{| class=wikitable
! [[Notasi Schönflies
! colspan=2 | [[grup Coxeter]]
! colspan=3 | [[Diagram Coxeter–Dynkin
! Urutan
! Terkait reguler dan <br/>
Baris 388 ⟶ 385:
||D<sub>nh</sub>|| I<sub>2</sub>(n)×A<sub>1</sub>||[n,2]
|rowspan=2|{{CDD|node|n|node|2|node}}
||{{CDD|node_c1|n|node_c2|2|node_c3}}||||4''n''||''n''-gonal [[Prisma (geometri)
|- align=center
||D<sub>nh</sub>×Dih<sub>1</sub> = D<sub>2nh</sub>|| I<sub>2</sub>(n)×A<sub>1</sub>×2||[[n],2]
Baris 445 ⟶ 442:
{| class=wikitable
!colspan=2|[[Coxeter group]]/[[Coxeter notation|notation]]
!colspan=2|[[
!Order
!Related polytopes
Baris 544 ⟶ 541:
{| class=wikitable
! colspan=2 | [[Coxeter group]]/[[Coxeter notation|notation]]
! colspan=2 | [[Coxeter-Dynkin diagram|Coxeter<
! Order
! Related regular and <br/>prismatic polytopes
Baris 1.161 ⟶ 1.158:
== Referensi ==
{{Reflist}}
* [[Harold Scott MacDonald Coxeter|H. S. M. Coxeter]]: ''Kaleidoscopes: Selected Writings of H. S. M. Coxeter'', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Webarchive|url=https://web.archive.org/web/20160711140441/http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=2016-07-11 }}
** (Paper 23) H. S. M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985)
* H. S. M. Coxeter and W. O. J. Moser. ''Generators and Relations for Discrete Groups'' 4th ed, Springer-Verlag. New York. 1980
* [[Norman Johnson (mathematician)|N. W. Johnson]]: ''Geometries and Transformations'', (2018) Chapter 11: Finite symmetry groups
== Pranala luar ==
*[http://www.reciprocalnet.org/edumodules/symmetry/index.html Web-based point group tutorial] {{Webarchive|url=https://web.archive.org/web/20200222232344/http://www.reciprocalnet.org/edumodules/symmetry/index.html |date=2020-02-22 }} (needs Java and Flash)
*[http://plus.swap-zt.com/2010/06/sieve Subgroup enumeration] {{Webarchive|url=https://web.archive.org/web/20110824153712/http://plus.swap-zt.com/2010/06/sieve/ |date=2011-08-24 }} (needs Java)
* [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node9.html The Geometry Center: 2.1 Formulas for Symmetries in Cartesian Coordinates (two dimensions)] {{Webarchive|url=https://web.archive.org/web/20210418133146/http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node9.html |date=2021-04-18 }}
* [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node45.html The Geometry Center: 10.1 Formulas for Symmetries in Cartesian Coordinates (three dimensions)] {{Webarchive|url=https://web.archive.org/web/20210418133153/http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node45.html |date=2021-04-18 }}
{{Authority control}}
[[Kategori: Kristalografi]]▼
[[Kategori:
[[Kategori:Kesimetrian
|