Grup titik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
123569yuuift (bicara | kontrib)
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
InternetArchiveBot (bicara | kontrib)
Rescuing 4 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(5 revisi perantara oleh 4 pengguna tidak ditampilkan)
Baris 1:
{| class=wikitable align=right width=400
|- valign=top
|[[Gambar:Flag of Hong Kong.svg|240px]]<BRbr>''[[Bauhinia blakeana]]'' bunga di bendera wilayah [[Hong Kong]] memiliki simetri C<sub> 5 </sub>; bintang di setiap kelopak memiliki simetri D<sub> 5 </sub>.
|[[Berkas:Yin and Yang.svg|160px]]<BRbr>[[Yin dan Yang]] simbol memiliki geometri simetri C<sub> 2 </sub> dengan warna terbalik
|}
 
Dalam [[geometri]], '''grup titik''' adalah [[grup (matematika) | grup]] geometris [[simetri | simetri]] ([[isometri | isometri]]) yang menjaga setidaknya satu titik tetap. Kelompok titik dapat ada dalam [[ruang Euklides]] dengan dimensi apa pun, dan setiap kelompok titik dalam dimensi '' d '' adalah subkelompok dari [[grup ortogonal]] O(''d''). Kelompok titik dapat direalisasikan sebagai himpunan [[matriks ortogonal | matriks ortogonal]] '' M '' yang mengubah titik '' x '' menjadi titik '' y '':
 
: ''y'' = ''Mx''
 
dimana asal adalah titik tetap. Elemen kelompok titik dapat berupa [[Rotasi (matematika) | rotasi]] ([[determinan]] dari ''M'' = 1) atau yang lain [[Refleksi (matematika) | refleksi]], atau [[rotasi tidak tepat]] (determinan dari '' M '' = −1).
 
Kelompok titik diskrit di lebih dari satu dimensi datang dalam keluarga tak berhingga, tetapi dari [[teorema pembatasan kristalografi]] dan [[Grup ruang#Teorema Bieberbach.27s | salah satu teorema Bieberbach]]. setiap jumlah dimensi hanya memiliki jumlah terbatas dari kelompok titik yang simetris di beberapa [[kisi (grup) | kisi]] ​​atauatau kisi dengan nomor itu. Ini adalah [[grup titik kristalografi]].
 
== Grup titik kiral dan akiral, grup refleksi ==
Baris 26:
{| class=wikitable
!Group
![[Notasi Coxeter | Coxeter]]
! [[Diagram Coxeter–Dynkin | Diagram Coxeter]]
! Urutan
!Deskripsi
Baris 47:
|-
! Grup
! [[Notasi Hermann–Mauguin | Intl]]
! [[Orbifold]]
! [[Notasi Coxeter | Coxeter]]
! Urutan
! Deskripsi
Baris 77:
! Group
! colspan=2 | [[Grup Coxeter]]
! colspan=2 | [[Diagram Coxeter–Dynkin | Diagram Coxeter]]
! Urutan
! Subgrup
Baris 116:
| D<sub>''n''</sub>×2|| I<sub>2</sub>(n)×2||{{brackets|n}} = [2n]||{{CDD|node|n|node}}||{{CDD|node_c1|n|node_c1}} = {{CDD|node_c1|2x|n|node}}||4''n''
|}
 
 
=== Tiga dimensi ===
Baris 131 ⟶ 130:
|+ Domain fundamental berwarna genap/ganjil dari grup reflektif
|-
!C<sub>1v</sub><BRbr>Urutan 2
!C<sub>2v</sub><BRbr>Urutan 4
!C<sub>3v</sub><BRbr>Urutan 6
!C<sub>4v</sub><BRbr>Urutan 8
!C<sub>5v</sub><BRbr>Urutan 10
!C<sub>6v</sub><BRbr>Urutan 12
!...
|-
Baris 147 ⟶ 146:
|-
|-
!D<sub>1h</sub><BRbr>Urutan 4
!D<sub>2h</sub><BRbr>Urutan 8
!D<sub>3h</sub><BRbr>Urutan 12
!D<sub>4h</sub><BRbr>Urutan 16
!D<sub>5h</sub><BRbr>Urutan 20
!D<sub>6h</sub><BRbr>Urutan 24
!...
|-
Baris 163 ⟶ 162:
|[[Gambar:Spherical dodecagonal bipyramid2.png|80px]]
|-
!T<sub>d</sub><BRbr>Urutan 24
!O<sub>h</sub><BRbr>Urutan 48
!I<sub>h</sub><BRbr>Urutan 120
|-
|[[Gambar:Tetrahedral reflection domains.png|80px]]
Baris 178 ⟶ 177:
|-
! [[Notasi Hermann–Mauguin|Intl]<sup>*</sup>
! Geo<BRbr><ref>''Grup Ruang Kristalografi dalam aljabar geometris'', [[David Hestenes|D. Hestenes]] and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) [[PDF]] [http://geocalc.clas.asu.edu/pdf/CrystalGA.pdf] {{Webarchive|url=https://web.archive.org/web/20201020021821/http://geocalc.clas.asu.edu/pdf/CrystalGA.pdf |date=2020-10-20 }}</ref>
! [[Notasi Orbifold | Orbifold]]
! [[Notasi Schönflies | Schönflies]]
! [[John Horton Conway | Conway]]
! [[Notasi Coxeter | Coxeter]]
! Urutan
|- align=center
Baris 195 ⟶ 194:
| {{overline|1}}
| {{overline|22}}
| ×1
| &times;1
| C<SUB>i</SUB> = S<SUB>2</SUB>
| CC<SUB>2</SUB>
Baris 209 ⟶ 208:
| 2
|- align=center valign=top
| 2<BRbr>3<BRbr>4<BRbr>5<BRbr>6<BRbr>n
| {{overline|2}}<BRbr>{{overline|3}}<BRbr>{{overline|4}}<BRbr>{{overline|5}}<BRbr>{{overline|6}}<BRbr>{{overline|n}}
| 22<BRbr>33<BRbr>44<BRbr>55<BRbr>66<BRbr>nn
| C<SUB>2</SUB><BRbr>C<SUB>3</SUB><BRbr>C<SUB>4</SUB><BRbr>C<SUB>5</SUB><BRbr>C<SUB>6</SUB><BRbr>C<SUB>n</SUB>
| C<SUB>2</SUB><BRbr>C<SUB>3</SUB><BRbr>C<SUB>4</SUB><BRbr>C<SUB>5</SUB><BRbr>C<SUB>6</SUB><BRbr>C<SUB>n</SUB>
| [2]<sup>+</sup><BRbr>[3]<sup>+</sup><BRbr>[4]<sup>+</sup><BRbr>[5]<sup>+</sup><BRbr>[6]<sup>+</sup><BRbr>[n]<sup>+</sup><BRbr>
| 2<BRbr>3<BRbr>4<BRbr>5<BRbr>6<BRbr>''n''
|- align=center valign=top
| mm2<BRbr>3m<BRbr>4mm<BRbr>5m<BRbr>6mm<br>nmm<br>nm
| 2<BRbr>3<BRbr>4<BRbr>5<BRbr>6<BRbr>n
| *22<BRbr>*33<BRbr>*44<BRbr>*55<BRbr>*66<BRbr>*nn
| C<SUB>2v</SUB><BRbr>C<SUB>3v</SUB><BRbr>C<SUB>4v</SUB><BRbr>C<SUB>5v</SUB><BRbr>C<SUB>6v</SUB><BRbr>C<SUB>nv</SUB>
| CD<SUB>4</SUB><BRbr>CD<SUB>6</SUB><BRbr>CD<SUB>8</SUB><BRbr>CD<SUB>10</SUB><BRbr>CD<SUB>12</SUB><BRbr>CD<SUB>2n</SUB>
| [2]<BRbr>[3]<BRbr>[4]<BRbr>[5]<BRbr>[6]<BRbr>[n]
| 4<BRbr>6<BRbr>8<BRbr>10<BRbr>12<BRbr>2''n''
|- align=center valign=top
| 2/m<BRbr>{{overline|6}}<BRbr>4/m<BRbr>{{overline|10}}<BRbr>6/m<BRbr>n/m<BRbr>{{overline|2n}}
| {{overline|2}} 2<BRbr>{{overline|3}} 2<BRbr>{{overline|4}} 2<BRbr>{{overline|5}} 2<BRbr>{{overline|6}} 2<BRbr>{{overline|n}} 2
| 2*<BRbr>3*<BRbr>4*<BRbr>5*<BRbr>6*<BRbr>n*
| C<SUB>2h</SUB><BRbr>C<SUB>3h</SUB><BRbr>C<SUB>4h</SUB><BRbr>C<SUB>5h</SUB><BRbr>C<SUB>6h</SUB><BRbr>C<SUB>nh</SUB>
| ±C<SUB>2</SUB><BRbr>CC<SUB>6</SUB><BRbr>±C<SUB>4</SUB><BRbr>CC<SUB>10</SUB><BRbr>±C<SUB>6</SUB><BRbr>±C<SUB>n</SUB> / CC<SUB>2n</SUB>
| [2,2<sup>+</sup>]<BRbr>[2,3<sup>+</sup>]<BRbr>[2,4<sup>+</sup>]<BRbr>[2,5<sup>+</sup>]<BRbr>[2,6<sup>+</sup>]<BRbr>[2,n<sup>+</sup>]
| 4<BRbr>6<BRbr>8<BRbr>10<BRbr>12<BRbr>2''n''
|- align=center valign=top
| {{overline|4}}<BRbr>{{overline|3}}<BRbr>{{overline|8}}<BRbr>{{overline|5}}<BRbr>{{overline|12}}<br>{{overline|2n}}<br>{{overline|n}}
| {{overline|4 2}}<BRbr>{{overline|6 2}}<BRbr>{{overline|8 2}}<BRbr>{{overline|10 2}}<BRbr>{{overline|12 2}}<BRbr>{{overline|2n 2}}
| 2×<br>3×<br>4×<br>5×<br>6×<br>n×
| 2&times;<BR>3&times;<BR>4&times;<BR>5&times;<BR>6&times;<BR>n&times;
| S<SUB>4</SUB><BRbr>S<SUB>6</SUB><BRbr>S<SUB>8</SUB><BRbr>S<SUB>10</SUB><BRbr>S<SUB>12</SUB><BRbr>S<SUB>2n</SUB>
| CC<SUB>4</SUB><BRbr>±C<SUB>3</SUB><BRbr>CC<SUB>8</SUB><BRbr>±C<SUB>5</SUB><BRbr>CC<SUB>12</SUB><BRbr>CC<SUB>2n</SUB> / ±C<SUB>n</SUB>
| [2<sup>+</sup>,4<sup>+</sup>]<BRbr>[2<sup>+</sup>,6<sup>+</sup>]<BRbr>[2<sup>+</sup>,8<sup>+</sup>]<BRbr>[2<sup>+</sup>,10<sup>+</sup>]<BRbr>[2<sup>+</sup>,12<sup>+</sup>]<BRbr>[2<sup>+</sup>,2n<sup>+</sup>]
| 4<BRbr>6<BRbr>8<BRbr>10<BRbr>12<BRbr>2''n''
|}
|
{| class="wikitable"
|-
! [[Notasi Herman–Maugin| Intl]]
! Geo
! [[Orbifold|Intl]]
! Geo
! [[Notasi Orbifold|Orbifold]]
! [[Notasi Schönflies | Schönflies]]
! [[John Horton Conway | Conway]]
! [[Notasi Coxeter | Coxeter]]
! Urutan
|- align=center valign=top
| 222<BRbr>32<BRbr>422<BRbr>52<BRbr>622<br>n22<br>n2
| {{overline|2}} {{overline|2}}<BRbr>{{overline|3}} {{overline|2}}<BRbr>{{overline|4}} {{overline|2}}<BRbr>{{overline|5}} {{overline|2}}<BRbr>{{overline|6}} {{overline|2}}<BRbr>{{overline|n}} {{overline|2}}
| 222<BRbr>223<BRbr>224<BRbr>225<BRbr>226<BRbr>22n
| D<SUB>2</SUB><BRbr>D<SUB>3</SUB><BRbr>D<SUB>4</SUB><BRbr>D<SUB>5</SUB><BRbr>D<SUB>6</SUB><BRbr>D<SUB>n</SUB>
| D<SUB>4</SUB><BRbr>D<SUB>6</SUB><BRbr>D<SUB>8</SUB><BRbr>D<SUB>10</SUB><BRbr>D<SUB>12</SUB><BRbr>D<SUB>2n</SUB>
| [2,2]<sup>+</sup><BRbr>[2,3]<sup>+</sup><BRbr>[2,4]<sup>+</sup><BRbr>[2,5]<sup>+</sup><BRbr>[2,6]<sup>+</sup><BRbr>[2,n]<sup>+</sup>
| 4<BRbr>6<BRbr>8<BRbr>10<BRbr>12<BRbr>2''n''
|- align=center valign=top
| mmm<BRbr>{{overline|6}}m2<BRbr>4/mmm<BRbr>{{overline|10}}m2<BRbr>6/mmm<br>n/mmm<br>{{overline|2n}}m2
| 2 2<BRbr>3 2<BRbr>4 2<BRbr>5 2<BRbr>6 2<BRbr>n 2
| *222<BRbr>*223<BRbr>*224<BRbr>*225<BRbr>*226<BRbr>*22n
| D<SUB>2h</SUB><BRbr>D<SUB>3h</SUB><BRbr>D<SUB>4h</SUB><BRbr>D<SUB>5h</SUB><BRbr>D<SUB>6h</SUB><BRbr>D<SUB>nh</SUB>
| ±D<SUB>4</SUB><BRbr>DD<SUB>12</SUB><BRbr>±D<SUB>8</SUB><BRbr>DD<SUB>20</SUB><BRbr>±D<SUB>12</SUB><BRbr>±D<SUB>2n</SUB> / DD<SUB>4n</SUB>
| [2,2]<BRbr>[2,3]<BRbr>[2,4]<BRbr>[2,5]<BRbr>[2,6]<BRbr>[2,n]
| 8<BRbr>12<BRbr>16<BRbr>20<BRbr>24<BRbr>4''n''
|- align=center valign=top
| {{Overline|4}}2m<BRbr>{{Overline|3}}m<BRbr>{{Overline|8}}2m<BRbr>{{Overline|5}}m<BRbr>{{Overline|12}}2m<br>{{Overline|2n}}2m<br>{{Overline|n}}m
| 4 {{overline|2}}<BRbr>6 {{overline|2}}<BRbr>8 {{overline|2}}<BRbr>10 {{overline|2}}<BRbr>12 {{overline|2}}<BRbr>n {{overline|2}}<BRbr>
| 2*2<BRbr>2*3<BRbr>2*4<BRbr>2*5<BRbr>2*6<BRbr>2*n
| D<SUB>2d</SUB><BRbr>D<SUB>3d</SUB><BRbr>D<SUB>4d</SUB><BRbr>D<SUB>5d</SUB><BRbr>D<SUB>6d</SUB><BRbr>D<SUB>nd</SUB>
| ±D<SUB>4</SUB><BRbr>±D<SUB>6</SUB><BRbr>DD<SUB>16</SUB><BRbr>±D<SUB>10</SUB><BRbr>DD<SUB>24</SUB><BRbr>DD<SUB>4n</SUB> / ±D<SUB>2n</SUB>
| [2<sup>+</sup>,4]<BRbr>[2<sup>+</sup>,6]<BRbr>[2<sup>+</sup>,8]<BRbr>[2<sup>+</sup>,10]<BRbr>[2<sup>+</sup>,12]<BRbr>[2<sup>+</sup>,2n]
| 8<BRbr>12<BRbr>16<BRbr>20<BRbr>24<BRbr>4''n''
|- align=center
| 23
Baris 342 ⟶ 341:
Kelompok titik refleksi, ditentukan oleh 1 sampai 3 bidang cermin, juga dapat diberikan oleh [[grup Coxeter]] dan polihedra terkait. Grup [3,3] dapat digandakan, ditulis sebagai {{brackets | 3,3}}, memetakan cermin pertama dan terakhir satu sama lain, menggandakan simetri menjadi 48, dan isomorfik ke grup [4,3].
{| class=wikitable
! [[Notasi Schönflies | Schönflies]]
! colspan=2 | [[grup Coxeter]]
! colspan=3 | [[Diagram Coxeter–Dynkin | Diagram Coxeter]]
! Urutan
! Terkait reguler dan <br/>
Baris 386 ⟶ 385:
||D<sub>nh</sub>|| I<sub>2</sub>(n)×A<sub>1</sub>||[n,2]
|rowspan=2|{{CDD|node|n|node|2|node}}
||{{CDD|node_c1|n|node_c2|2|node_c3}}||||4''n''||''n''-gonal [[Prisma (geometri) | prisma]]
|- align=center
||D<sub>nh</sub>×Dih<sub>1</sub> = D<sub>2nh</sub>|| I<sub>2</sub>(n)×A<sub>1</sub>×2||[[n],2]
Baris 443 ⟶ 442:
{| class=wikitable
!colspan=2|[[Coxeter group]]/[[Coxeter notation|notation]]
!colspan=2|[[Coxeter&ndash;DynkinCoxeter–Dynkin diagram|Coxeter diagram]]
!Order
!Related polytopes
Baris 542 ⟶ 541:
{| class=wikitable
! colspan=2 | [[Coxeter group]]/[[Coxeter notation|notation]]
! colspan=2 | [[Coxeter-Dynkin diagram|Coxeter<BRbr>diagrams]]
! Order
! Related regular and <br/>prismatic polytopes
Baris 1.159 ⟶ 1.158:
== Referensi ==
{{Reflist}}
* [[Harold Scott MacDonald Coxeter|H. S. M. Coxeter]]: ''Kaleidoscopes: Selected Writings of H. S. M. Coxeter'', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Webarchive|url=https://web.archive.org/web/20160711140441/http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=2016-07-11 }}
** (Paper 23) H. S. M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559&ndash;591559–591]
* H. S. M. Coxeter and W. O. J. Moser. ''Generators and Relations for Discrete Groups'' 4th ed, Springer-Verlag. New York. 1980
* [[Norman Johnson (mathematician)|N. W. Johnson]]: ''Geometries and Transformations'', (2018) Chapter 11: Finite symmetry groups
 
== Pranala luar ==
*[http://www.reciprocalnet.org/edumodules/symmetry/index.html Web-based point group tutorial] {{Webarchive|url=https://web.archive.org/web/20200222232344/http://www.reciprocalnet.org/edumodules/symmetry/index.html |date=2020-02-22 }} (needs Java and Flash)
*[http://plus.swap-zt.com/2010/06/sieve Subgroup enumeration] {{Webarchive|url=https://web.archive.org/web/20110824153712/http://plus.swap-zt.com/2010/06/sieve/ |date=2011-08-24 }} (needs Java)
* [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node9.html The Geometry Center: 2.1 Formulas for Symmetries in Cartesian Coordinates (two dimensions)] {{Webarchive|url=https://web.archive.org/web/20210418133146/http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node9.html |date=2021-04-18 }}
* [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node45.html The Geometry Center: 10.1 Formulas for Symmetries in Cartesian Coordinates (three dimensions)] {{Webarchive|url=https://web.archive.org/web/20210418133153/http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node45.html |date=2021-04-18 }}
 
{{Authority control}}
 
[[Kategori: Kristalografi]]
[[Kategori: Kesimetrian EuklideanKristalografi]]
[[Kategori:Kesimetrian Teori grupEuklidean]]
[[Kategori:Teori Kristalografigrup]]