Grup titik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.3
InternetArchiveBot (bicara | kontrib)
Rescuing 4 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(1 revisi perantara oleh pengguna yang sama tidak ditampilkan)
Baris 177:
|-
! [[Notasi Hermann–Mauguin|Intl]<sup>*</sup>
! Geo<br><ref>''Grup Ruang Kristalografi dalam aljabar geometris'', [[David Hestenes|D. Hestenes]] and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) [[PDF]] [http://geocalc.clas.asu.edu/pdf/CrystalGA.pdf] {{Webarchive|url=https://web.archive.org/web/20201020021821/http://geocalc.clas.asu.edu/pdf/CrystalGA.pdf |date=2020-10-20 }}</ref>
! [[Notasi Orbifold|Orbifold]]
! [[Notasi Schönflies|Schönflies]]
Baris 1.158:
== Referensi ==
{{Reflist}}
* [[Harold Scott MacDonald Coxeter|H. S. M. Coxeter]]: ''Kaleidoscopes: Selected Writings of H. S. M. Coxeter'', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Webarchive|url=https://web.archive.org/web/20160711140441/http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=2016-07-11 }}
** (Paper 23) H. S. M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559–591]
* H. S. M. Coxeter and W. O. J. Moser. ''Generators and Relations for Discrete Groups'' 4th ed, Springer-Verlag. New York. 1980
Baris 1.164:
 
== Pranala luar ==
*[http://www.reciprocalnet.org/edumodules/symmetry/index.html Web-based point group tutorial] {{Webarchive|url=https://web.archive.org/web/20200222232344/http://www.reciprocalnet.org/edumodules/symmetry/index.html |date=2020-02-22 }} (needs Java and Flash)
*[http://plus.swap-zt.com/2010/06/sieve Subgroup enumeration] {{Webarchive|url=https://web.archive.org/web/20110824153712/http://plus.swap-zt.com/2010/06/sieve/ |date=2011-08-24 }} (needs Java)
* [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node9.html The Geometry Center: 2.1 Formulas for Symmetries in Cartesian Coordinates (two dimensions)] {{Webarchive|url=https://web.archive.org/web/20210418133146/http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node9.html |date=2021-04-18 }}
* [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node45.html The Geometry Center: 10.1 Formulas for Symmetries in Cartesian Coordinates (three dimensions)] {{Webarchive|url=https://web.archive.org/web/20210418133153/http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node45.html |date=2021-04-18 }}