Daftar identitas eksponensiasi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) Tidak ada ringkasan suntingan |
Wagino Bot (bicara | kontrib) |
||
(9 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 2:
Identitas [[eksponen]] atau [[eksponensiasi]] adalah sifat-sifat metode efisien untuk mengkomputasi berbagai bentuk yang elusif. Mengingat kembali bahwa eksponen adalah perkalian berulang pada basis, atau darab basis dikali sebanyak <math>n</math><ref name=":1">{{Cite web|last=Nykamp|first=Duane|title=Basic rules for exponentiation|url=https://mathinsight.org/exponentiation_basic_rules|website=Math Insight|access-date=Agustus 27, 2020}}</ref>, maka secara matematis dirumuskan sebagai
{{Equation box 1|border|indent=:|title=|equation=<math>b^n = b \times \cdots \times b
Sebagai limitasi <math>b</math>, grafik akan turun bila <math>0 < b < 1</math> dan akan menaik bila <math>b > 1</math>, dengan masing-masing menyatakan bahwa grafik akan mengalami peluruhan dan pertumbuhan.<ref>{{Cite web|title=Graphs of Exponential and Logarithmic Functions|url=https://courses.lumenlearning.com/boundless-algebra/chapter/graphs-of-exponential-and-logarithmic-functions/|website=Lumen, Boundless Algebra}}</ref> Mengenai [[Akar ke-n|akar]], akan tetap dimasukkan ke dalam halaman ini (karena merupakan bentuk pecahan eksponen).▼
▲Sebagai limitasi <math>b</math>, grafik akan turun bila <math>0 < b < 1</math> dan akan menaik bila <math>b > 1</math>, dengan masing-masing menyatakan bahwa grafik akan mengalami peluruhan dan pertumbuhan.<ref>{{Cite web|title=Graphs of Exponential and Logarithmic Functions|url=https://courses.lumenlearning.com/boundless-algebra/chapter/graphs-of-exponential-and-logarithmic-functions/|website=Lumen, Boundless Algebra}}</ref> Mengenai [[Akar ke-n|akar]] atau '''daftar identitas akar''', akan tetap dimasukkan ke dalam halaman ini (karena merupakan bentuk pecahan eksponen).
Meskipun eksponensiasi invers dengan logaritma, namun keduanya memiliki sifat yang interdependensi dengan satu sama lain. Berikut adalah '''daftar identitas eksponen''' atau [[daftar identitas eksponensiasi]], di antaranya sebagai berikut.▼
▲Meskipun eksponensiasi invers dengan logaritma, namun keduanya memiliki sifat yang interdependensi dengan satu sama lain. Berikut adalah '''daftar identitas eksponen''' atau
== Sifat dasar ==
Baris 27 ⟶ 29:
* <math>(b+c)^n = \sum_{k=1}^n \binom{n}{k} b^{n-k} c^k</math><ref>{{Cite web|title=Binomial Theorem|url=https://mathworld.wolfram.com/BinomialTheorem.html|website=Wolfram MathWorld}}</ref>{{Refn|Pada penambahan dan pengurangan basis dalam pemangkatan disebut sebagai teorema binomial.|group=nb}}
* <math>(b-c)^n = \sum_{k=1}^n \binom{n}{k} b^{n-k} (-c)^k</math>
Baris 51 ⟶ 52:
== Invers ==
Eksponen memiliki invers yang disebut logaritma, dimana logaritma merupakan operasi pencarian eksponen supaya basis tertentu dipangkatkan dengan eksponen ini menghasilkan nilai dimasukkan.<ref name=":0">Entis Sutisna, S.Pd, [https://sman3simpanghilir.sch.id/download/file/X_Matematika_Peminatan_KD_3_1_Fungsi_Eksponen_dan_Fungsi_Logaritma_.pdf Fungsi Eksponen dan Fungsi Logaritma Matematika Peminatan Kelas X] {{Webarchive|url=https://web.archive.org/web/20211021114551/https://sman3simpanghilir.sch.id/download/file/X_Matematika_Peminatan_KD_3_1_Fungsi_Eksponen_dan_Fungsi_Logaritma_.pdf |date=2021-10-21 }}, hlm. 29.</ref> Kita
{{Equation box 1|border|indent=:|title=|equation=<math>b^x = c \iff ^b\!\log c = x</math>.|cellpadding=6|border colour=#0073CF|background colour=#F5FFFA}}
Berikut adalah identitas eksponen yang berkaitan dengan logaritma.
* <math>^a\!\log b^x = x \, ^a\!\log b</math>
* <math>b^{^b\!\log x} = x</math>
== Identitas dalam kalkulus ==
Baris 68 ⟶ 75:
* <math>b^x = 1 + \sum_{n=1}^{\infty}\frac{(\ln b)^n}{n!}x^n</math> dalam ekspansi deret Taylor.
*<math>e^{x} = \sum^{\infty}_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots</math>
== Lihat pula ==
Baris 77 ⟶ 85:
== Rujukan ==
<references />{{Identitas matematika}}
▲{{Equation box 1|border|indent=:|title=|equation=<math>b^n = b \times \cdots \times b</math>.|cellpadding=6|border colour=#0073CF|background colour=#F5FFFA}} {{Equation box 1|border|indent=:|title=|equation=<math>b^x = c \iff ^b\!\log c = x</math>.|cellpadding=6|border colour=#0073CF|background colour=#F5FFFA}}
[[Kategori:Eksponensial]]
[[Kategori:Identitas matematika]]
|