Deret Fourier: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
123569yuuift (bicara | kontrib)
Membalikkan revisi 17341572 oleh 123569yuuift (bicara)
Tag: Pembatalan Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
 
(15 revisi perantara oleh 7 pengguna tidak ditampilkan)
Baris 1:
{{Dalam perbaikan}}
{{Transformasi Fourier}}
Dalam [[matematika]], '''Deret Fourier''' ({{IPAc-en|ˈ|f|ʊr|i|eɪ|,_|-|i|ər}}<ref>{{Dictionary.com|Fourier}}</ref>) merupakan bentuk penguraian [[fungsi periodik]] menjadiberupa jumlahan[[deret fungsi-fungsi(matematika)|penjumlahan]] berosilasi,nilai yaitugelombang fungsi sinus[[sin]] dan kosinus,[[cos]]. ataupun[[Frekuensi]] eksponensialdari kompleks.setiap Studigelombang deretdalam Fourieroperasi penjumlahan (atau yang dikenal sebagai [[harmonisa]]) merupakan cabang[[kelipatan (matematika)|kelipatan]] interger terhadap [[frekuensi fundamental]] dari fungsi periodik. Setiap [[fase (gelombang)|fase]] harmonisa dapat ditentukan dengan [[analisis Fourierharmonisa]]. Deret Fourier diperkenalkanmemiliki kemungkinan untuk memuat harmonisa dengan olehjumlah [[Josephpenjumlahan Fouriertak terhingga|tak terhingga]]. (1768-1830)Hasil untukpenjumlahan memecahkanbagian masalahharmonisa dari deretan tersebut tidak selalu menghasilkan nilai pendekatan terhadap fungsi tersebut. Sebagai contoh, menggunakan beberapa harmonisa awal dari deret Fourier terhadap [[persamaangelombang panaspersegi]] diakan menghasilkan nilai pendekatan dari lempenggelombang logampersegi.
 
<gallery widths="256" heights="256">
Persamaan panas merupakan [[persamaan diferensial parsial]]. Sebelum Fourier, pemecahan persamaan panas ini tidak diketahui secara umum, meskipun solusi khusus diketahui bila sumber panas berperilaku dalam cara sederhana, terutama bila sumber panas merupakan gelombang [[sinus]] atau [[kosinus]]. Solusi sederhana ini saat ini kadang-kadang disebut sebagai solusi eigen. Gagasan Fourier adalah memodelkan sumber panas ini sebagai superposisi (atau kombinasi [[linear]]) gelombang sinus dan kosinus sederhana, dan menuliskan pemecahannya sebagai superposisi solusi eigen terkait. Superposisi kombinasi linear ini disebut sebagai deret Fourier.
File:SquareWaveFourierArrows,rotated,nocaption 20fps.gif|Nilai yang dihasilkan oleh penjumlahan enam titik (dilambangkan oleh titik merah) yang berbeda (dilambangkan oleh anak panah) dari deret Fourier akan menghasilkan sebuah nilai yang mendekati nilai dari gelombang persegi (dilambangkan oleh titik biru). Poros dari setiap anak panah terdapat pada jumlah dari seluruh nilai anak panah di kirinya.
File:Fourier Series.svg|Empat penjumlahan parsial pertama dari deret Fourier terhadap [[gelombang persegi]]. Semakin banyak harmonisa ditambahkan, penjumlahan parsial akan mendekati (semakin terlihat seperti) bentuk gelombang persegi.
 
File:Fourier series and transform.gif|Fungsi <math>s_6(x)</math> (ditandai dengan warna merah) merupakan jumlah deret Fourier dari 6 harmonisa gelombang sin (warna biru). Fungsi tersebut bertranformasi menjadi domain representasi frekuensi <math>S(f)</math> dengan nilai sebagai jumlah dari enam gelombang sin.
Meskipun motivasi awal adalah untuk memecahkan persamaan panas, kemudian terlihat jelas bahwa teknik serupa dapat diterapkan untuk sejumlah besar permasalahan [[fisika]] dan matematika. Deret Fourier saat ini memiliki banyak penerapan di bidang [[teknik elektro]], analisis [[vibrasi]], [[akustika]], [[optika]], [[pengolahan citra]], [[mekanika kuantum]], dan lain-lain.
</gallery>
 
Hampir semua{{efn-ua|kecuali untuk fungsi [[Patologis (matematika)|patologikal]] yang tidak termasuk kedalam [[kondisi Dirichlet]]}} fungsi periodik dapat diuraikan menjadi deret Fourier yang dapat [[Konvergensi deret Fourier|berkonvergensi]].{{efn-ua|Konvergensi hanya dapat dilakukan ketika fungsi tersebut [[fungsi berkelanjutan|berkelanjutan]]. [[Klasifikasi tidak berkelanjutan#Lompatan tidak berkelanjutan|Lompatan tak berkelanjutan]] akan menghasilkan sebuah [[fenomena Gibbs]]. Deret tak terhingga akan terjadi [[Konvergensi titik tertentu|dikonvergensi hampir di semua titik]] kecuali titik-titik yang tidak memiliki keberlanjutan fungsi.}} Proses [[konvergensi deret Fourier]] berarti bahwa makin banyak harmonisa dari deret tersebut dijumlahkan, maka hasil dari operasi penjumlahan akan menghasilkan [[aproksiman (matematika)|nilai pendekatan]] dari fungsi tersebut, dan akan memiliki nilai yang setara dengan fungsi tersebut ketika banyak dari harmonisanya [[tak terhingga potensial|tak terhingga]].
==Definisi==
 
Deret Fourier hanya dapat menguraikan fungsi periodikal. Akan tetapi, fungsi non periodik dapat juga diuraikan menggunakan ekstensi dari deret Fourier yang dikenal sebagai [[transformasi Fourier]], operasi tersebut akan menguraikan fungsi non-periodik dengan periode tak terhingga. Kemudian, [[transformasi integral|transformasi]] tersebut akan menghasilkan uraian [[domain frekuensi]] dari fungsi non-periodik dan fungsi periodik, hal tersebut akan memungkinkan bentuk gelombang untuk dikonversi diantara representasi [[domain waktu]] dan representasi domain frekuensinya.
Pertimbangkan fungsi bernilai nyata, <math>s(x)</math>, yaitu [[integral Riemann|integrable]] pada interval panjang <math>P</math>, yang akan menjadi periode deret Fourier. Contoh umum interval analisis adalah:
 
Sejak zaman [[Joseph Fourier|Fourier]], banyak operasi nilai pendekatan berbeda untuk mendefinisikan dan memahami konsep deret Fourier telah ditemukan, semua dari operasi tersebut memiliki konsistensi terhadap operasi lainnua, tetapi masing-masing menekankan aspek topik yang berbeda. Beberapa pendekatan yang lebih kuat dan elegan didasarkan pada ide-ide dan alat-alat matematika yang tidak tersedia pada masa Fourier. Fourier pada awalnya mendefinisikan deret Fourier untuk fungsi bernilai [[Bilangan rill|rill]] dari argumen rill, dan menggunakan [[Sinus dan kosinus|fungsi sinus dan kosinus]] sebagai sebuah [[basis (aljabar linier)|kumpulan basis]] untuk operasi dekomposisi. Banyak [[Daftar transformasi deret Fourier|metode transformasi Fourier]] telah didefinisikan, memperluas gagasan awal ke banyak pengaplikasian dan melahirkan sebuah cabang [[cangkupan matematika|matematika]] baru yang dikenal sebagai [[analisis Fourier]] .
 
==Definisi==
=== Bagian pertama ===
Pertimbangkan fungsi bernilai nyata, <math>s(x)</math>, yang [[integral Riemann|integrable]] dalam interval dengan panjang <math>P</math>, yang akan menjadi periode deret Fourier. Contoh umum interval analisis adalah:
:<math>x \in [0,1],</math> dan <math>P=1.</math>
:<math>x \in [-\pi,\pi],</math> dan <math>P=2\pi.</math>
 
'''Analisis''' proses menentukan bobot, diindeks dengan integer <math>n</math>, yang merupakan jumlah siklus nilai <math>n^\text{th}</math> harmonik dalam interval analisis. Oleh karena itu, panjang suatu siklus, dalam satuan <math>x</math>, ialah <math>P/n</math>. Dan frekuensi harmonik yang sesuai adalah <math>n/P</math>. <math>n^{th}</math> harmonik nilai <math>\sin\left(2\pi x \tfrac{n}{P}\right)</math> dan <math>\cos\left(2\pi x \tfrac{n}{P}\right)</math>, dan amplitudo (bobot) mereka ditemukan dengan integrasi selama interval panjang <math>P</math>:<ref>{{cite book | last1 = Dorf| first1 = Richard C. | first2 = Ronald J. | last2 = Tallarida | title =Buku Saku Rumus Teknik Elektro | url = https://archive.org/details/pocketbookofelec0000dorf| publisher =CRC Press | edition =1 | date =1993-07-15 | location =Boca Raton,FL | pages =171–174[https://archive.org/details/pocketbookofelec0000dorf/page/171 171]–174 | isbn =0849344735 }}</ref>
 
{{Equation box 1
Baris 33 ⟶ 41:
:*Banyaknya teks memilih nilai <math>P=2\pi</math> untuk menyederhanakan argumen dari fungsi sinusoid.
 
=== DefinisiBagian 2kedua ===
Proses '''sintesis''' (Deret Fourier sebenarnya) adalah:
 
Baris 68 ⟶ 76:
|background colour=#F5FFFA}}
 
Bentuk kebiasaan untuk menggeneralisasi menjadi bernilai kompleks <math>s(x)</math> (bagian selanjutnya) diperoleh dengan menggunakan [[rumus Euler]] untuk membagi fungsi kosinus menjadi eksponensial kompleks. Di sini, [[konjugasi kompleks|konjugasi kompleks]] dilambangkan dengan tanda bintang:
 
:<math>
Baris 99 ⟶ 107:
|background colour=#F5FFFA}}
 
===Konvergensi===
{{main|Konvergensi Deret Fourier}}
Dalam aplikasi [[rekayasa]], deret Fourier umumnya dianggap berkumpul hampir di semua tempat (pengecualian berada pada diskontinuitas diskrit) karena fungsi yang ditemui dalam teknik berperilaku lebih baik daripada fungsi yang dapat diberikan oleh ahli matematika sebagai contoh tandingan untuk pres ini. Secara khusus, jika <math>s</math> kontinu dan turunan dari <math>s(x)</math> (yang mungkin tidak ada di semua tempat) adalah integratif persegi, kemudian deret Fourier <math>s</math> menyatu secara mutlak dan seragam ke nilai <math>s(x)</math>.<ref>{{cite book |title=Deret Fourier |first=Georgi P. |last=Tolstov |publisher=Courier-Dover |year=1976 |isbn=0-486-63317-9 |url=https://books.google.com/?id=XqqNDQeLfAkC&pg=PA82&dq=fourier-series+converges+continuous-function}}</ref> Jika suatu fungsi adalah [[Fungsi terintegrasi persegi|integral-persegi]] pada interval <math>[x_0,x_0+P]</math>, kemudian deret Fourier [[Teorema Carleson|menyatu dengan fungsi di hampir setiap titik]]. Konvergensi deret Fourier juga bergantung pada jumlah hingga maksimal dan minimal dalam suatu fungsi yang dikenal sebagai salah satu [[Kondisi dirichlet|Kondisi dirichlet untuk deret Fourier]]. Lihat [[Konvergensi seri Fourier]]. Koefisien Fourier dapat didefinisikan untuk fungsi atau distribusi yang lebih umum, dalam kasus seperti itu konvergensi dalam norma atau [[Konvergensi lemah (ruang Hilbert)|konvergensi lemah]] biasanya berupa inte.
 
<gallery widths="256" heights="256">
Fourier_series_square_wave_circles_animation.gif|link=//upload.wikimedia.org/wikipedia/commons/b/bd/Fourier_series_square_wave_circles_animation.svg|Empat jumlah parsial (deret Fourier) dengan panjang 1, 2, 3, dan 4, menunjukkan bagaimana pendekatan terhadap gelombang persegi meningkat seiring dengan bertambahnya jumlah suku [{{filepath:Fourier_series_square_wave_circle_animation.svg}} (animasi)]
 
Fourier_series_square_wave_circles_animationFourier_series_sawtooth_wave_circles_animation.gif|link={{filepath:Fourier_series_square_wave_circle_animation//upload.wikimedia.org/wikipedia/commons/1/1e/Fourier_series_sawtooth_wave_circles_animation.svg}}|Empat jumlah parsial (deret Fourier) dengan panjang 1, 2, 3, dan 4, menunjukkan bagaimana pendekatan terhadap gelombang persegigigi gergaji meningkat seiring dengan bertambahnya jumlah suku [{{filepath:Fourier_series_square_wave_circle_animationFourier_series_sawtooth_wave_circles_animation.svg}} (animasi)]
 
Fourier_series_sawtooth_wave_circles_animation.gif|link={{filepath:Fourier_series_sawtooth_wave_circles_animation.svg}}|Empat jumlah parsial (deret Fourier) dengan panjang 1, 2, 3, dan 4, menunjukkan bagaimana pendekatan terhadap gelombang gigi gergaji meningkat seiring dengan bertambahnya jumlah suku [{{filepath:Fourier_series_sawtooth_wave_circles_animation.svg}} (animasi)]
 
Example_of_Fourier_Convergence.gif |Contoh konvergensi ke fungsi yang agak sewenang-wenang. Perhatikan perkembangan "dering" (fenomena Gibbs) pada transisi ke / dari bagian vertikal.
 
</gallery>
Animasi interaktif dapat dilihat [http://bl.ocks.org/jinroh/7524988 lihat.]
 
=== Contoh ===
----------------------------------
==== Contoh 1: Deret Fourier sederhana ====
 
== Contoh ==
===Contoh 1: Deret Fourier sederhana===
[[Berkas:sawtooth pi.svg|thumb|right|400px|Plot dari [[gelombang gigi gergaji]], kelanjutan periodik dari fungsi linier <math>s(x)=x/\pi</math> on the interval <math>(-\pi,\pi]</math>]]
[[Berkas:Periodic identity function.gif|thumb|right|400px|Plot animasi dari lima seri Fourier parsial pertama yang berurutan]]
Baris 141 ⟶ 143:
Contoh ini mengarahkan kita ke solusi untuk [[Masalah Basel]].
 
==== Contoh 2: Motivasi Fourier ====
Perluasan deret Fourier dari fungsi kita pada Contoh 1 terlihat lebih rumit daripada rumus sederhana pada nilai <math>s(x)=x/ \pi</math>, jadi tidak segera jelas mengapa seseorang membutuhkan seri Fourier. Meskipun ada banyak penerapan, motivasi Fourier adalah dalam memecahkan [[persamaan panas]]. Misalnya, perhatikan pelat logam berbentuk persegi yang sisinya berukuran <math>\pi</math> meter, dengan koordinat <math>(x,y) \in [0,\pi] \times [0,\pi]</math>. Jika tidak ada sumber panas di dalam pelat, dan jika tiga dari empat sisi ditahan pada 0 derajat Celcius, sedangkan sisi keempat, diberikan oleh nilai <math>y=\pi</math>, dipertahankan pada gradien suhu <math>T(x,\pi)=x</math> derajat Celsius, untuk <math>x</math> pada nilai <math>(0,\pi)</math>, maka seseorang dapat menunjukkan bahwa distribusi panas stasioner (atau distribusi panas setelah periode waktu yang lama telah berlalu) diberikan oleh
: <math>T(x,y) = 2\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \sin(nx) {\sinh(ny) \over \sinh(n\pi)}.</math>
Di sini, sin<math>\sinh</math> adalah fungsisebuah [[sinusfungsi hiperbolik]]. Solusi persamaan panas tersebut diperoleh dengan cara mengalikan &nbsp;{{EquationNote|Eq.7}} menurut nilai <math>\sinh(ny)/\sinh(n\pi)</math>.<!--While our example function <math>s(x)</math> seems to have a needlessly complicated Fourier series, the heat distribution <math>T(x,y)</math> is nontrivial. The function <math>T</math> cannot be written as a [[closed-form expression]]. This method of solving the heat problem was made possible by Fourier's work.-->
 
===Aplikasi lain===
== Konvergen ==
 
=== Teorema<ref>Hendra Gunawan, ''Catatan Kuliah Analisis Fourier dan Wavelet'', 2014</ref> ===
Misalkan <math>f:\mathbb{R}\to\mathbb{R}</math> adalah fungsi yang periodik dengan periode <math>2\pi</math>, kontinu dan mulus bagian demi bagian.
Maka, deret Fourier dari <math>f</math> konvergen mutlak dan secara seragam pada <math>\mathbb{R}</math>.
 
=== Aplikasi lain ===
Aplikasi lain dari deret Fourier yaitu untuk menyelesaikan [[Masalah Basel]] dengan menggunakan [[Teorema Parseval]]. Contoh tersebut menggeneralisasi dan seseorang dapat menghitung [[Fungsi Riemann zeta|ζ]](2''n''), untuk bilangan bulat positif apa pun nilai&nbsp;''n''.
 
== Properti ==
=== Tabel properti dasar ===
 
===Tabel properti dasar===
Tabel ini menunjukkan beberapa operasi matematika dalam domain waktu dan efek yang sesuai dalam koefisien deret Fourier. Notasi:
* <math>z^{*}</math> adalah [[konjugasi kompleks]] dari fungsi <math>z</math>.
Baris 226 ⟶ 234:
 
=== Properti simetri ===
 
Ketika bagian nyata dan imajiner dari fungsi kompleks didekomposisi menjadi [[Fungsi genap dan ganjil#Genap–ganjil|bagian genap dan ganjil]], ada empat komponen, di bawah ini dilambangkan dengan subskrip RE, RO, IE, dan IO. Dan ada pemetaan satu-ke-satu antara empat komponen fungsi waktu kompleks dan empat komponen transformasi frekuensi kompleksnya:<ref name="ProakisManolakis1996">{{cite book|last1=Proakis|first1=John G. |last2=Manolakis|first2=Dimitris G.|author2-link= Dimitris Manolakis |title=Pemrosesan Sinyal Digital: Prinsip, Algoritma, dan Aplikasi|url=https://archive.org/details/digitalsignalpro00proa|url-access=registration|year=1996|publisher=Prentice Hall|isbn=978-0-13-373762-2|edition=3rd|p=[https://archive.org/details/digitalsignalpro00proa/page/291 291]}}</ref>
 
: <math>
\begin{array}{rccccccccc}
\text{Domain waktu} & f & = & f_{_{\text{RE}}} & + & f_{_{\text{RO}}} & + & i f_{_{\text{IE}}} & + &\underbrace{i\ f_{_{\text{IO}}}} \\
&\Bigg\Updownarrow\mathcal{F} & &\Bigg\Updownarrow\mathcal{F} & &\ \ \Bigg\Updownarrow\mathcal{F} & &\ \ \Bigg\Updownarrow\mathcal{F} & &\ \ \Bigg\Updownarrow\mathcal{F}\\
\text{FrequencyDomain domainfrekuensi} & F & = & F_{RE} & + & \overbrace{i\ F_{IO}} & + &i\ F_{IE} & + & F_{RO}
\end{array}
</math>
Baris 330 ⟶ 337:
</math>
 
== Notasi umum lainnya ==
Notasi pada nilai <math>c_n</math> tidak memadai untuk membahas koefisien Fourier dari beberapa fungsi yang berbeda. Oleh karena itu, biasanya diganti dengan bentuk fungsi yang dimodifikasi (<math>s</math>, dalam kasus ini), seperti <math>\hat{s}(n)</math> atau <math>S[n]</math>, dan notasi fungsional sering menggantikan langganan:
 
Baris 354 ⟶ 361:
Karena integral yang mendefinisikan transformasi Fourier dari fungsi periodik tidak konvergen, penting untuk melihat fungsi periodik dan transformasinya sebagai [[Distribusi (matematika) | distribusi]]. Dalam arti ini <math>\mathcal{F} \{ e^{i \frac{2\pi nx}{P} } \}</math> adalah [[Fungsi delta Dirac]], yang merupakan contoh distribusi.
}}
 
{{Gallery|width=150 | height=150 |lines=2 |align=right
|Berkas:Fourier Series.svg|
Empat jumlah parsial pertama dari deret Fourier untuk [[gelombang persegi]]
|Berkas:SquareWaveFourierArrows%2Crotated.gif
}}
 
==Definisi==
 
Pertimbangkan fungsi bernilai nyata, <math>s(x)</math>, yaitu [[integral Riemann|integrable]] pada interval panjang <math>P</math>, yang akan menjadi periode deret Fourier. Contoh umum interval analisis adalah:
:<math>x \in [0,1],</math> dan <math>P=1.</math>
:<math>x \in [-\pi,\pi],</math> dan <math>P=2\pi.</math>
 
'''Analisis''' proses menentukan bobot, diindeks dengan integer <math>n</math>, yang merupakan jumlah siklus nilai <math>n^\text{th}</math> harmonik dalam interval analisis. Oleh karena itu, panjang suatu siklus, dalam satuan <math>x</math>, ialah <math>P/n</math>. Dan frekuensi harmonik yang sesuai adalah <math>n/P</math>. <math>n^{th}</math> harmonik nilai <math>\sin\left(2\pi x \tfrac{n}{P}\right)</math> dan <math>\cos\left(2\pi x \tfrac{n}{P}\right)</math>, dan amplitudo (bobot) mereka ditemukan dengan integrasi selama interval panjang <math>P</math>:<ref>{{cite book | last1 = Dorf| first1 = Richard C. | first2 = Ronald J. | last2 = Tallarida | title =Buku Saku Rumus Teknik Elektro | publisher =CRC Press | edition =1 | date =1993-07-15 | location =Boca Raton,FL | pages =171–174 | isbn =0849344735 }}</ref>
 
{{Equation box 1
|indent =:
|title='''Koefisien Fourier'''
|equation = {{NumBlk||<math>
\begin{align}
a_n &= \frac{2}{P}\int_{P} s(x)\cdot \cos\left(2\pi x \tfrac{n}{P}\right)\, dx\\
b_n &= \frac{2}{P}\int_{P} s(x)\cdot \sin\left(2\pi x \tfrac{n}{P}\right)\, dx.
\end{align}
</math>|{{EquationRef|Eq.1}}}}
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}
 
:*Jika nilai <math>s(x)</math> ialah nilai <math>P</math> dari nilai periodik, maka setiap interval dengan panjang tersebut sudah cukup.
:*Nilai <math>a_0</math> dan <math>b_0</math> dapat direduksi menjadi nilai <math>a_0 = \frac{2}{P} \int_P s(x) \, dx</math> dan <math>b_0 = 0</math>.
:*Banyaknya teks memilih nilai <math>P=2\pi</math> untuk menyederhanakan argumen dari fungsi sinusoid.
 
Proses '''sintesis''' (Deret Fourier sebenarnya) adalah:
 
{{Equation box 1
|indent =:
|title='''Deret Fourier, bentuk sinus-kosinus'''
|equation = {{NumBlk||<math>
\begin{align}
s_N(x) = \frac{a_0}{2} + \sum_{n=1}^N \left(a_n \cos\left(\tfrac{2\pi nx}{P}\right) + b_n \sin\left(\tfrac{2\pi nx}{P} \right) \right).
\end{align}
</math>|{{EquationRef|Eq.2}}}}
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}
 
Secara umum, integer pada nilai <math>N</math> secara teoritis tidak terbatas. Meski begitu, deretan tersebut mungkin tidak konvergen atau persis sama <math>s(x)</math> di semua nilai <math>x</math> (seperti diskontinuitas satu titik) dalam interval analisis. Untuk fungsi "berperilaku baik" yang khas dari proses fisik, kesetaraan biasanya diasumsikan.
 
[[Berkas:Fourier transform, Fourier series, DTFT, DFT.svg|thumb|400px|Jika <math>s(t)</math> adalah fungsi yang terdapat dalam interval panjang <math>P</math> (dan nol di tempat lain), kuadran kanan atas adalah contoh dari koefisien deret Fourier Pada nilak (<math>A_n</math>) mungkin terlihat seperti ketika diplot terhadap frekuensi harmonik yang sesuai. Kuadran kiri atas adalah transformasi Fourier yang sesuai dari <math>s(t).</math> Penjumlahan deret Fourier (tidak diperlihatkan) mensintesis penjumlahan periodik <math>s(t),</math> sedangkan invers Fourier transform (tidak ditampilkan) hanya mensintesis <math>s(t).</math>]]
Menggunakan identitas trigonometri:
 
:<math>A_n\cdot \cos\left(\tfrac{2\pi nx}{P}-\varphi_n\right) \ \equiv \ \underbrace{A_n \cos(\varphi_n)}_{a_n}\cdot \cos\left(\tfrac{2\pi nx}{P}\right) + \underbrace{A_n \sin(\varphi_n)}_{b_n}\cdot \sin\left(\tfrac{2\pi nx}{P}\right),</math>
 
dan definisi nilai <math>A_n \triangleq \sqrt{a_n^2+b_n^2}</math> dan <math>\varphi_n \triangleq \operatorname{arctan2}(b_n,a_n)</math>,
pasangan sinus dan kosinus dapat dinyatakan sebagai sinusoid tunggal dengan offset fase, analog dengan konversi antara koordinat ortogonal (Kartesius) dan polar:
 
{{Equation box 1
|indent =:
|title='''Deret Fourier, bentuk fase amplitudo'''
|equation = {{NumBlk||<math>s_N(x) = \frac{A_0}{2} + \sum_{n=1}^N A_n\cdot \cos\left(\tfrac{2\pi nx}{P} - \varphi_n \right).</math>|{{EquationRef|Eq.3}}}}
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}
 
Bentuk kebiasaan untuk menggeneralisasi menjadi bernilai kompleks <math>s(x)</math> (bagian selanjutnya) diperoleh dengan menggunakan [[rumus Euler]] untuk membagi fungsi kosinus menjadi eksponensial kompleks. Di sini, [[konjugasi kompleks|konjugasi kompleks]] dilambangkan dengan tanda bintang:
 
:<math>
\begin{array}{lll}
\cos\left( \tfrac{2\pi nx}{P} - \varphi_n \right) &{}\equiv \tfrac{1}{2}e^{ i \left(\tfrac{2\pi nx}{P} - \varphi_n \right)} & {} + \tfrac{1}{2}e^{-i \left(\tfrac{2\pi nx}{P} - \varphi_n \right)}\\
&=\left(\tfrac{1}{2} e^{-i \varphi_n}\right) \cdot e^{i \tfrac{2\pi (+n)x}{P}} &{}+\left(\tfrac{1}{2} e^{-i \varphi_n}\right)^* \cdot e^{i \tfrac{2\pi (-n)x}{P}}.
\end{array}
</math>
 
Oleh karena itu, dengan definisi:
:<math>c_n \triangleq \left\{
\begin{array}{lll}
A_0/2 &= a_0/2, \quad & n = 0\\
\tfrac{A_n}{2} e^{-i \varphi_n} &= \tfrac{1}{2}(a_n -i b_n), \quad & n > 0\\
c_{|n|}^*, \quad && n < 0
\end{array}\right\}\quad =\quad \frac{1}{P}\int_P s(x)\cdot e^{-i \tfrac{2\pi nx}{P}}\ dx,
</math>
 
hasil akhirnya adalah:
 
{{Equation box 1
|indent =:
|title='''Deret Fourier, bentuk eksponensial'''
|equation = {{NumBlk||<math>
s_N(x) = \sum_{n=-N}^N c_n\cdot e^{i \tfrac{2\pi nx}{P}}.
</math>|{{EquationRef|Eq.4}}}}
|cellpadding= 6
|border
|border colour = #0073CF
|background colour=#F5FFFA}}
 
===Konvergensi===
{{main|Konvergensi Deret Fourier}}
Dalam aplikasi [[rekayasa]], deret Fourier umumnya dianggap berkumpul hampir di semua tempat (pengecualian berada pada diskontinuitas diskrit) karena fungsi yang ditemui dalam teknik berperilaku lebih baik daripada fungsi yang dapat diberikan oleh ahli matematika sebagai contoh tandingan untuk pres ini. Secara khusus, jika <math>s</math> kontinu dan turunan dari <math>s(x)</math> (yang mungkin tidak ada di semua tempat) adalah integratif persegi, kemudian deret Fourier <math>s</math> menyatu secara mutlak dan seragam ke nilai <math>s(x)</math>.<ref>{{cite book |title=Deret Fourier |first=Georgi P. |last=Tolstov |publisher=Courier-Dover |year=1976 |isbn=0-486-63317-9 |url=https://books.google.com/?id=XqqNDQeLfAkC&pg=PA82&dq=fourier-series+converges+continuous-function}}</ref> Jika suatu fungsi adalah [[Fungsi terintegrasi persegi|integral-persegi]] pada interval <math>[x_0,x_0+P]</math>, kemudian deret Fourier [[Teorema Carleson|menyatu dengan fungsi di hampir setiap titik]]. Konvergensi deret Fourier juga bergantung pada jumlah hingga maksimal dan minimal dalam suatu fungsi yang dikenal sebagai salah satu [[Kondisi dirichlet|Kondisi dirichlet untuk deret Fourier]]. Lihat [[Konvergensi seri Fourier]]. Koefisien Fourier dapat didefinisikan untuk fungsi atau distribusi yang lebih umum, dalam kasus seperti itu konvergensi dalam norma atau [[Konvergensi lemah (ruang Hilbert)|konvergensi lemah]] biasanya berupa inte.
 
<gallery widths="256" heights="256">
 
Fourier_series_square_wave_circles_animation.gif|link={{filepath:Fourier_series_square_wave_circle_animation.svg}}|Empat jumlah parsial (deret Fourier) dengan panjang 1, 2, 3, dan 4, menunjukkan bagaimana pendekatan terhadap gelombang persegi meningkat seiring dengan bertambahnya jumlah suku [{{filepath:Fourier_series_square_wave_circle_animation.svg}} (animasi)]
 
Fourier_series_sawtooth_wave_circles_animation.gif|link={{filepath:Fourier_series_sawtooth_wave_circles_animation.svg}}|Empat jumlah parsial (deret Fourier) dengan panjang 1, 2, 3, dan 4, menunjukkan bagaimana pendekatan terhadap gelombang gigi gergaji meningkat seiring dengan bertambahnya jumlah suku [{{filepath:Fourier_series_sawtooth_wave_circles_animation.svg}} (animasi)]
 
Example_of_Fourier_Convergence.gif |Contoh konvergensi ke fungsi yang agak sewenang-wenang. Perhatikan perkembangan "dering" (fenomena Gibbs) pada transisi ke / dari bagian vertikal.
 
</gallery>
Animasi interaktif dapat dilihat [http://bl.ocks.org/jinroh/7524988 lihat.]
 
----------------------------------
 
== Konvergen ==
 
=== Teorema<ref>Hendra Gunawan, ''Catatan Kuliah Analisis Fourier dan Wavelet'', 2014</ref> ===
Jika <math>f</math> periodik dengan periode <math>2\pi</math>, kontinu dan mulus bagian demi bagian, maka deret Fourier dari <math>f</math> konvergen mutlak dan secara seragam pada <math>\mathbb{R}</math>.
 
== Referensi ==
Baris 478 ⟶ 366:
 
== Pranala luar ==
* [http://www.fourier-series.com/fourierseries2/fourier_series_tutorial.html Tutorial flash interaktif untuk deret Fourier] {{Webarchive|url=https://web.archive.org/web/20140715225944/http://www.fourier-series.com/fourierseries2/fourier_series_tutorial.html |date=2014-07-15 }}
 
* [http://www.fourier-series.com/fourierseries2/fourier_series_tutorial.html Tutorial flash interaktif untuk deret Fourier]
* [http://www.jhu.edu/~signals/phasorapplet2/phasorappletindex.htm Phasor Phactory] Allows custom control of the harmonic amplitudes for arbitrary terms
* [http://www.falstad.com/fourier/ Java applet] Ekspansi deret Fourier untuk fungsi sembarang
* [http://www.exampleproblems.com/wiki/index.php/Fourier_Series Example problems] {{Webarchive|url=https://web.archive.org/web/20080410180641/http://www.exampleproblems.com/wiki/index.php/Fourier_Series |date=2008-04-10 }} - Contoh perhitungan deret Fourier
* [http://www.e-dsp.com/8/ Fourier series explanation] - pendekatan nonmatematis sederhana
* {{MathWorld | urlname= FourierSeries | title= Fourier Series}}
* [http://math.fullerton.edu/mathews/c2003/FourierSeriesComplexMod.html Modul deret Fourier oleh John H. Mathews]
* [http://www.shsu.edu/~icc_cmf/bio/fourier.html Joseph Fourier] {{Webarchive|url=https://web.archive.org/web/20011205152434/http://www.shsu.edu/~icc_cmf/bio/fourier.html |date=2001-12-05 }} - Situs web tentang riwayat Fourier historical section of this article
* [http://www.sfu.ca/sonic-studio/handbook/Fourier_Theorem.html SFU.ca] - 'Teorema Fourier'
* In the bottom of this [http://www.boutichesaid.cv.dz/FourierSeries/F_Series.htm interactive lecture] {{Webarchive|url=https://web.archive.org/web/20081206033014/http://www.boutichesaid.cv.dz/FourierSeries/F_Series.htm |date=2008-12-06 }}, animasi Java yang menunjukkan bagaimana pengaruh terhadap deret Fourier bila suku orde ke-n+1 ditambahkan ke suku ke-n
 
{{Deret (matematika)}}
{{matematika-stub}}