Arus bolak-balik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Aladdin Ali Baba (bicara | kontrib)
Tidak ada ringkasan suntingan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
 
(45 revisi perantara oleh 31 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Types_of_currentTypes of current-id.svg|thumbjmpl|Diagram arus bolak-balik (garis hijau) dan [[arus searah]] (garis merah)]]{{Elektromagnetisme|cTopic=Rangkaian}}[[Berkas:City lights in motion.jpg|jmpl|ka|250px|Lampu-lampu kota yang dilihat dari kamera yang bergerak. Listrik arus bolak-balik menyebabkan lampu berkelip-kelip yang membuat garis terlihat menjadi bintik-bintik.]]
 
'''Arus bolak-balik''' ({{lang-en|alternating current}}) adalah [[arus listrik]] yang memiliki arah arus yang berubah-ubah secara bolak-balik. Sifat arus bolak-balik berbeda dengan [[arus searah]] yang arah arusnya tidak berubah-ubah terhadap waktu. Bentuk gelombang dari arus bolak-balik biasanya berbentuk gelombang sinusoida sehingga memungkinkan pengaliran energi secara efisien. Arus bolak-balik juga dapat mengalir dalam bentuk gelombang [[segitiga]] atau bentuk gelombang [[segi empat]].{{Sfn|Ponto|2018|p=51}} Secara umum, penyaluran listrik arus bolak-balik dari sumber listrik menuju ke kantor-kantor atau rumah-rumah [[penduduk]]. Arus bolak-balik juga dialirkan sebagai sinyal-sinyal [[radio]] atau [[audio]] yang disalurkan melalui [[kabel]]. Di dalam aplikasi-aplikasi ini, tujuan utama yang paling penting adalah pengambilan informasi yang termodulasi atau terkode di dalam sinyal arus bolak-balik tersebut.{{Sfn|Ponto|2018|p=51}}
[[Berkas:City lights in motion.jpg|thumb|right|250px|Lampu-lampu kota yang dilihat dari kamera yang bergerak. Listrik arus bolak-balik menyebabkan lampu berkelip-kelip yang membuat garis terlihat menjadi bintik-bintik.]]
[[Berkas:3000 Watt 24 volt Inverter with built in charger and transfer switch.jpg|thumb|300px|3000 Watt 24 volt Inverter with built in charger and transfer switch.]]
'''Arus bolak-balik''' (AC/''alternating current'') adalah [[arus listrik]] dimana besarnya dan arahnya arus berubah-ubah secara bolak-balik. Berbeda dengan [[arus searah]] dimana arah arus yang mengalir tidak berubah-ubah dengan waktu. Bentuk gelombang dari listrik arus bolak-balik biasanya berbentuk gelombang sinusoida, karena ini yang memungkinkan pengaliran energi yang paling efisien. Namun dalam aplikasi-aplikasi spesifik yang lain, bentuk gelombang lain pun dapat digunakan, misalnya bentuk gelombang segitiga (triangular wave) atau bentuk gelombang segi empat (square wave).
 
== Sejarah penggunaan ==
Secara umum, listrik bolak-balik berarti penyaluran [[listrik]] dari sumbernya (misalnya PLN) ke kantor-kantor atau rumah-rumah penduduk. Namun ada pula contoh lain seperti sinyal-sinyal [[radio]] atau [[audio]] yang disalurkan melalui kabel, yang juga merupakan listrik arus bolak-balik. Di dalam aplikasi-aplikasi ini, tujuan utama yang paling penting adalah pengambilan informasi yang termodulasi atau terkode di dalam sinyal arus bolak-balik tersebut.
Pada tahun 1835, [[Hippolyte Pixii]] membuat [[pembangkit listrik]] arus bolak balik yang pertama. Pixii membuat alat tersebut dengan putaran magnet. Hingga tahun 1822, pembangkit listrik arus bolak-balik yang dibuat oleh Pixii tidak menarik perhatian para ilmuwan karena desain pembangkit listrik difokuskan pada pembangkit listrik arus searah. Kajian tentang arus bolak-balik baru dimulai pada tahun 1882 dengan perkembangan yang pesat. Berbagai penemuan yang bersangkutan dengan listrik arus bolak-balik dilakukan oleh para ilmuwan kelistrikan seperti [[Thomas Alva Edison]] dan [[Nikola Tesla]]. [[Sebastian Ferranti]] dan [[William Thomson, 1st Baron Kelvin|Lord Kelvin]] akhirnya menciptakan teknologi pembangkit listrik arus bolak-balik dan transformator yang paling awal.{{Sfn|Ponto|2018|p=51-52}}
 
Sistem arus listrik bolak-balik pertama kali dibuat di [[Great Barrington]], [[Massachusetts]] oleh [[William Stanley]]. Pembuatan sistem arus bolak-balik ini didukung oleh [[Westinghouse Electric Corporation|Westinghouse]]. Di saat yang bersamaan, Nikola Tesla juga memulai penjualan desain sistem listrik arus bolak-balik di New York. Saat itu, New York telah mengadopsi sistem listrik arus searah sehingga penjualan sistem arus bolak-balik menjadi gagal. Pada tahun 1887, C.S. Bradley membuat generator arus bolak-balik 3 fasa yang merupakan alat yang membuat arus listrik bolak-balik lebih efisien sehingga dipakai sampai masa kini. Pada tahun 1900, generator bolak balik 3 fasa telah menjadi prinsip dasar sumber tenaga listrik di dunia.{{Sfn|Ponto|2018|p=52}}
{{listrik-stub}}
 
Penggunaan arus bolak-balik mengalami perkembangan teknologi yang pesat serta kemudahan listrik arus bolak-balik dalam [[transmisi tenaga listrik]] dan distribusi tenaga listrik, menjadikan arus bolak-balik menjadi pesaing dari arus searah. Penyaluran tenaga listrik arus searah yang dimulai pada akhir abad ke-19 Masehi oleh [[Thomas Alva Edison]] kemudian digantikan oleh arus bolak-balik. {{Sfn|Ponto|2018|p=52}}
[[Kategori:Elektronika]]
[[Kategori:Listrik]]
 
== Sumber ==
[[af:Wisselstroom]]
 
[[als:Wechselstrom]]
=== Generator arus bolak-balik ===
[[ar:تيار متردد]]
Arus bolak-balik dapat dihasilkan menggunakan generator listrik dengan [[frekuensi]] rendah. Frekuensi pembangkitan listrik arus bolak-balik tidak lebih dari 1 kHz. Prinsip pembangkitan arus bolak-balik dilakukan dengan memanfaatkan prinsip [[elektromagnetisme]]. Dua kutub medan magnet ditempatkan pada sebuah kumparan dengan liltan [[Penghantar listrik|konduktor]]. Medan magnet dan kuat arus listrik bolak-balik yang dihasilkan didasarkan pada luas permukaan kumparan.{{Sfn|Gertshen, Kneser dan Vogel|1996|p=176}}
[[az:Dəyişən cərəyan]]
 
[[be-x-old:Зьменны ток]]
== Bentuk ==
[[bg:Променлив ток]]
 
[[bn:পরিবর্তী তড়িৎ প্রবাহ]]
=== Gelombang sinus ===
[[ca:Corrent altern]]
[[Gelombang sinus]] merupakan bentuk arus bolak-balik yang paling sederhana. Arus berbentuk gelombang sinus dihasilkan oleh beragam jenis pembangkit listrik yang menggunakan [[turbin]] sebagai penggerak rotor generatornya. Jenis pembangkit ini diantaranya ialah [[pembangkit listrik tenaga air]], [[PLTU Batubara|pembangkit listrik tenaga uap batu bara]], [[Tenaga angin lepas pantai|pembangkit listrik tenaga angin]], dan [[pembangkit listrik tenaga nuklir]].{{Sfn|Abdullah|2017|p=483-484}}
[[cs:Střídavý proud]]
 
[[da:Vekselstrøm]]
== Satuan pengukuran ==
[[de:Wechselstrom]]
Satuan pengukuran arus listrik yang digunakan secara [[Mancanegara|internasional]] adalah [[Ampere]]. Standar satuan ini pertama kali ditetapkan pada tahun 1893 bersama dengan satuan [[Ohm]] dan satuan [[Volt]]. Hasil akhir dari pertemuan internasional tersebut adalah penetapan nilai dari satuan Amper internasional. Amper internasional dijelaskan sebagai jumlah arus listrik secara konstan yang mampu melalui larutan [[perak nitrat]] dalam air yang sesuai dengan spesifikasi standar. [[Sedimentasi|Pengendapan]] perak dilakukan dalam kecepatan 0,001118 gram per detik. Pada tanggal 1 Januari 1948 ditetapkan sebuah standar baru yang menjadi standar absolut hingga saat ini. Dalam standar absolut ditetapkan bahwa satu Amper internasional sama dengan nilai dari 0,99835 amper absolut.<ref>{{Cite book|last=Poerwanto, Hidayati, J., dan Anizar|first=|date=2012|url=https://www.academia.edu/21745453/1917_Instrumentasi_dan_Alat_Ukur|title=Instrumen dan Alat Ukur|location=Yogyakarta|publisher=Graha Ilmu|isbn=978-979-756-360-8|pages=7|url-status=live}}</ref>
[[el:Εναλλασσόμενο ρεύμα]]
 
[[en:Alternating current]]
== Perumusan ==
[[eo:Alterna kurento]]
 
[[es:Corriente alterna]]
=== Tegangan listrik ===
[[et:Vahelduvvool]]
[[Berkas:Sine wave 2.svg|ka|jmpl|A sine wave, over one cycle (360°). The dashed line represents the [[Root mean square]] (RMS) value at about 0.707]]
[[eu:Korronte alterno]]
Adanya arus bolak balik berarti [[tegangan listrik]] tersebut juga bolak-balik. Tegangan listrik bolak balik bisa direpresentasikan dengan formula ini:
[[fa:جریان متناوب]]
 
[[fi:Vaihtovirta]]
:<math>v(t)=V_\mathrm{peak}\cdot\sin(\omega t)</math>,
[[fr:Courant alternatif]]
 
[[gl:Corrente alterna]]
Dimana
[[he:זרם חילופין]]
* <math>\displaystyle V_{\rm peak}</math> adalah puncak tegangan listrik (unit: [[volt]]),
[[hi:प्रत्यावर्ती धारा]]
* <math>\displaystyle\omega</math> adalah [[Angular frequency|frekuensi sudut]] (unit: [[Radians per second|radians per detik]])
[[hr:Izmjenična električna struja]]
* Frekuensi sudut bisa disambungkan dengan frekuensi biasa, <math>\displaystyle f</math> (unit = [[hertz]]), yang direpresentasikan dengan putrana per detik, dengan menggunakan formula <math>\displaystyle\omega = 2\pi f</math>.
[[ht:Kouran altènatif (AC)]]
 
[[hu:Váltakozó áram]]
* <math>\displaystyle t</math> adalah waktu (unit: [[Second|detik]]).
[[io:Korento alternanta]]
 
[[is:Riðstraumur]]
Jumlah puncak-ke-puncak tekanan bolak balik direpresentasikan dengan perbedaan antara puncak positif ke puncak negatif. tekanan puncak-ke-puncak bisa ditulis dengan hubungan <math>V_{\rm pp}</math> or <math>V_{\rm P-P}</math>, yang bernilai <math>V_{\rm peak} - (-V_{\rm peak}) = 2 V_{\rm peak}</math>.
[[it:Corrente alternata]]
 
[[ja:交流]]
=== Daya listrik ===
[[kn:ಪರ್ಯಾಯ(ಸರದಿಯಂತೆ ಬರುವ) ವಿದ್ಯುತ್ ಪ್ರವಾಹ]]
{{main|AC power}}
[[ko:교류]]
 
[[ku:Sirêma berguhêr]]
Hubungan antara [[daya listrik]] dan tegangan listrik bolak-balik bisa direpresentasikan dengan:
[[lt:Kintamoji elektros srovė]]
 
[[lv:Maiņstrāva]]
:<math>P = \frac{v^2}{R}</math> di mana <math>R</math> adalah hambatan muatan.
[[ml:പ്രത്യാവർത്തിധാരാ വൈദ്യുതി]]
 
[[ms:Arus ulang-alik]]
Dibandingkan dengan menggunakan hubungan, <math>P</math>, Lebih efektif jika menggunakan hasil tengah-tengah (bila mana hasil tengah-tengah bisa didapatkan di manapun). Jadi, daya bolak balik bisa direpresentasikan oleh hasil tegangan rata-rata, ditulis dengan <math>V_{\rm rms}</math>, menjadi
[[nl:Wisselstroom]]
: <math>P_{\rm time~averaged} = \frac{{V^2}_{\rm rms}}{R}.</math>
[[nn:Vekselspenning]]
 
[[no:Vekselstrøm]]
=== Daya getar ===
[[pl:Prąd przemienny]]
: <math>v(t)=V_\mathrm{peak}\sin(\omega t)</math>
[[pt:Corrente alternada]]
: <math>i(t)=\frac{v(t)}{R}=\frac{V_\mathrm{peak}}{R}\sin(\omega t)</math>
[[ro:Curent alternativ]]
: <math>P(t)=v(t)\ i(t)=\frac{(V_\mathrm{peak})^2}{R} \sin^2(\omega t)</math>
[[ru:Переменный ток]]
 
[[sh:Izmjenična struja]]
Menggunakan [[Trigonometric identity|Identitas trigonometri]], tenaga osilasi menjadi dua kali lipat frekuensi oleh tekanan listrik.
[[simple:Alternating current]]
: <math>\sin^2 x = \frac {1 - \cos 2x}{2}</math>
[[sk:Striedavý prúd]]
 
[[sl:Izmenični električni tok]]
=== Tegangan rata-rata ===
[[sr:Наизменична струја]]
* Untuk tegangan sinusoidal:
[[su:Arus listrik bulak-balik]]
: <math>
[[sv:Växelström]]
\begin{align}
[[ta:மாறுதிசை மின்னோட்டம்]]
V_\mathrm{rms} &=\sqrt{\frac{1}{T} \int_0^{T}[{V_{pk}\sin( \omega t+\phi)]^2 dt}}\\
[[tr:Alternatif akım]]
&=V_{pk}\sqrt{\frac{1}{2T} \int_0^{T}[{1-\cos(2\omega t+2\phi)] dt}}\\
[[uk:Змінний струм]]
&=V_{pk}\sqrt{\frac{1}{2T} \int_0^{T}{ dt}}\\
[[vi:Điện xoay chiều]]
&=\frac{V_{pk}}{\sqrt {2}}
[[wo:Dawaan bu safaanu]]
\end{align}
[[zh:交流電]]
</math>
 
: Faktor <math>\sqrt{2}</math> adalah [[Crest factor|faktor crest]], yang berbeda di fungsi yang berbeda.
* Untuk [[triangle wave]]form:
: <math>V_\mathrm{rms}=\frac{V_\mathrm{peak}}{\sqrt{3}}.</math>
* Untuk [[square wave]]form:
: <math>\displaystyle V_\mathrm{rms}=V_\mathrm{peak}.</math>
* Untuk waveform dasar <math>v(t)</math> dengan period <math>T</math>:
: <math>V_\mathrm{rms}=\sqrt{\frac{1}{T} \int_0^{T}{[v(t)]^2 dt}}.</math>
 
== Frekuensi ==
Frekuensi sistem listrik berbeda-beda di [[negara]] yang berbeda, tetapi biasanya berkisar di antara 50-60 [[Hertz]]. Beberapa negara seperti Jepang mempunyai dua frekuensi listrik yang berbeda yaitu 50&nbsp;Hz dan 60&nbsp;Hz, tergantung dengan pembangkit listrik yang dipakai. Frekuensi yang berkisar antara 50–60&nbsp;Hz dipilih dengan alasan yang cukup masuk akal. Arus listrik dengan frekuensi rendah membuat pemakai listrik dengan motor elektrik lebih mudah. Terlebih dengan aplikasi yang berhubungan dengan traksi dari komutator, seperti di kasus rel kereta. Namun dengan memakai frekuensi yang rendah, akan terlihat kedipan di lampu yang sangat mengesalkan apalagi di lampu incandescent.
 
== Penerapan praktis ==
 
=== Motor listrik arus bolak-balik ===
[[Motor listrik]] arus bolak balik menggunakan arus listrik yang memiliki prinsip kerja yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Bagian dasar dari motor listrik ini yaitu stator dan rotor. Stator merupakan tempat berputarnya rotor, sedangkan rotor merupakan komponen listrik yang berputar untuk memutar poros motor. Motor listrik arus bolak-balik mengatasi kelemahan motor arus searah yaitu kecepatan yang sulit dikendalikan. Motor arus bolak-balik dilengkapi dengan sebuah penggerak yang bernama frekuensi variabel yang berfungsi untuk meningkatkan kendali kecepatan sekaligus menurunkan penggunaan daya listrik.{{Sfn|Bagia dan Parsa|2018|p=5}}
 
==== Motor induksi ====
[[Sistem kelistrikan]] modern dimulai ketika motor induksi menggunakan arus bolak-balik. Penggunaan arus bolak-balik pada motor induksi dilakukan pertama kali oleh [[Nikola Tesla]].<ref>{{Cite book|last=Elshabrina|first=|date=2016|url=http://e-perpustakaan.kemendesa.go.id/admin/assets/front/katalog/file/BUKU-PINTAR-TOKOH-PENEMU-PALING-HEBAT-DI-DUNIA--1.pdf|title=Buku Pintar Tokoh Penemu Paling Hebat di Dunia|location=Yoyakarta|publisher=Cemerlang Publishing|isbn=|pages=88|url-status=live}}{{Pranala mati|date=April 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> Arus bolak-balik menjadi penggerak dari rotor pada motor arus bolak-balik. Rotor terletak di bagian dalam motor dan merupakan bagian yang dapat berputar. Perputaran rotor terjadi karena adanya torsi yang bekerja pada porosnya. Torsi dihasilkan oleh medan magnet yang berputar akibat arus bolak-balik.{{Sfn|Bagia dan Parsa|2018|p=29}}
 
Motor listrik arus bolak balik telah digunakan pada [[peralatan listrik]] [[rumah tangga]] seperti [[mesin cuci]], [[kipas angin]], dan [[penyejuk udara]]. Di dalam proses kontrol gerak pada industri, motor induksi merupakan motor listrik yang paling umum digunakan. Motor induksi arus bolak-balik memiliki desain yang sederhana dengan tingkat pemeliharaan yang rendah. Sumber tegangan listrik untuk melakukan kerja pada motor listrik dapat diperoleh secara langsung melalui sumber listrik arus bolak-balik yang tersedia di dalam instalasi listrik bangunan.{{Sfn|Bagia dan Parsa|2018|p=28}}
 
==== Motor sinkron ====
[[Motor sinkron]] termasuk dalam motor listrik yang menggunakan sumber arus listrik bolak-balik. Cara kerja motor dimulai dari pemberian tegangan pada kumparan stator dengan sistem 3 fasa. Pemberian tegangan menghasilkan fluks magnet putar dan menimbulkan gaya gerak listrik pada kumparan stator. Perputaran secara terus-menerus meghasilkan fluks magnet putar yang memotong kumparan setiap saat. Fluks putar yang dihasilkan oleh arus bolak-balik tidak seluruhnya dihasilkan pada kumparan stator. Pada kumparan stator timbul fluks bocor yang dinyatakan dengan hambatan armatur dan reaktansi armatur. Kumparan rotor terletak antara kutub magnet utara dan kutub magnet selatan sehingga mempunyai fluks magnet. Kedua [[Fluks magnetik|fluks magnet]] tersebut akan saling berinteraksi dan mengakibatkan rotor berputar. Perputaran rotor sama dengan kecepatan pemberian fluks magnet putar dari stator.{{Sfn|Bagia dan Parsa|2018|p=29}}
 
=== Transformator ===
Transformator atau trafo merupakan salah satu alat yang memiliki prinsip kerja mampu mengkonversi dari arus bolak-balik ke arus searah dengan cara memindahkan tenaga listrik arus bolak-balik antar dua lilitan kawat atau lebih melalui [[induksi elektromagnetik]]. Prinsip transformator ini membuat transformator menjadi salah satu alat yang mempunyai keunggulan dari alat lain.{{Sfn|Bagia dan Parsa|2018|p=67}}
 
==== Kendali motor arus bolak-balik ====
Dalam kendali motor arus bolak-balik, transformator berperan untuk mengurangi tegangan pada terminal motor selama periode percepatan, cara ini dinamakan pengasutan autotransformator. Motor arus bolak-balik membutuhkan arus mula yang sangat besar sehingga dibutuhkan suatu cara agar motor ini mampu bekerja secara efektif dan efesien. Selama pengasutan dengan pereduksian tegangan, motor itu terhubung ke tap-tap pada autotransformator. Tegangan mulai yang rendah membuat motor tersebut menarik arus listrik yang lebih sedikit dan menghasilkan [[torsi]] yang lebih sedikit dibandingkan jika ia terhubung langsung dengan tegangan jala-jala. Perpindahan tegangan dapat diatur pada suatu relai jika perpindahannya mengalami pengurangan tegangan tegangan total. Suatu relai yang sensitif terhadap arus mungkin digunakan untuk mengendalikan perpindahan untuk memperoleh percepatan aru secara terbatas.{{Sfn|Bagia dan Parsa|2018|p=77}}
 
==== Strukur transformator ====
[[Berkas:Transformator scheme ru.svg|transformator_scheme_ru.svg]]
 
Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah <math>\delta\phi=\epsilon\times\delta\,t</math> dan rumus untuk ggl. induksi yang terjadi di lilitan sekunder adalah <math>\epsilon=N\frac{\delta\phi}{\delta\,t}</math>.
 
Karena kedua kumparan dihubungkan dengan fluks yang sama, maka
<math>\frac{\delta\phi}{\delta\,t}=\frac{V_p}{N_p}=\frac{V_s}{N_s}</math>
 
Dengan menyusun ulang [[persamaan]] akan didapat <math>\frac{V_p}{V_s}=\frac{N_p}{N_s}</math>. Dari rumus-rumus di atas, didapat pula: <math>V_p\,I_p=V_s\,I_s</math>
 
Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.
 
== Bahaya ==
Arus bolak-balik dengan nilai hingga 10 [[Ampere]] tidak dapat membahayakan manusia selama tidak menyentuh dan mengalir ke tubuh. Sebaliknya, arus bolak-balik dengan rentang antara 10 hingga 100 rniliAmpere dan memiliki frekuensi rendah dapat menyebabkan kematian jika bersentuhan langsung dengan tubuh manusia. Ambang batas frekuensi yang tidak membahayakan tubuh manusia ialah 10<sup>5</sup> Hz. Panas yang dihasilkan oleh arus listrik bolak-balik juga dapat menembus sedalam beberapa milimeter ke permukaan [[kulit]] dan merusaknya. Arus bolak-balik dengan frekuensi tinggi dapat menghasilkan panas yang dapat merusak [[Organ (anatomi)|organ]] tubuh yang paling dalam.{{Sfn|Gertshen, Kneser dan Vogel|1996|p=193}}
 
== Referensi ==
<references />
 
== Daftar pustaka ==
 
# {{cite book|last=Abdullah|first=Mikrajuddin|date=|year=2017|url=https://firmanlaurensius.files.wordpress.com/2017/05/fisika-dasar-ii-mikrajuddin-abdullah-mei-2017.pdf|title=Fisika Dasar II|location=Bandung|publisher=Institut Teknologi Bandung|isbn=|pages=|ref={{sfnref|Abdullah|2017}}|url-status=live}}
# {{cite book|last=Bagia, I. N., dan Parsa, I. M.|first=|date=|year=2018|url=https://www.researchgate.net/profile/I_Made_Parsa/publication/323986635_MOTOR-MOTOR_LISTRIK/links/5ac57efbaca2720544cf86b7/MOTOR-MOTOR-LISTRIK.pdf|title=Motor-motor Listrik|location=Bandung|publisher=CV. Rasi Terbit|isbn=|pages=|ref={{sfnref|Bagia dan Parsa|2018}}|url-status=live}}
# {{cite book|last=Gertshen, C., Kneser, H.O., dan Vogel, H.|first=|date=|year=1996|url=https://core.ac.uk/download/pdf/227146408.pdf|title=Fisika: Listrik Magnet dan Optik|location=Jakarta|publisher=Pusat Pembinaan dan Pengembangan Bahasa|isbn=979-459-693-0|pages=|ref={{sfnref|Gertshen, Kneser dan Vogel|1996}}|url-status=live}}
# {{cite book|last=Ponto|first=Hantje|date=|year=2018|url=http://repository.unima.ac.id:8080/jspui/bitstream/123456789/621/1/FT%20PONTO%20KI%201%20BUKU%20REFERENSI%20Dasar%20Teknik%20Listrik.pdf|title=Dasar Teknik Listrik|location=Sleman|publisher=Deepublish|isbn=978-623-7022-93-0|pages=|ref={{sfnref|Ponto|2018}}|url-status=live}}
 
== Bacaan lebih lanjut ==
{{refbegin}}
* Willam A. Meyers, ''History and Reflections on the Way Things Were: Mill Creek Power Plant – Making History with AC'', IEEE Power Engineering Review, February 1997, pp. 22–24
{{refend}}
 
[[Kategori:Teknik elektro]]
[[Kategori:Arus listrik|bolak-balik]]
[[Kategori:Daya listrik]]