Transmisi (telekomunikasi): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Kronzii88 (bicara | kontrib)
Tag: VisualEditor mengosongkan halaman [ * ]
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
 
(30 revisi perantara oleh 13 pengguna tidak ditampilkan)
Baris 1:
'''Transmisi''' merupakanatau sebuah pemancar (''Transmitter'pemancaran''' ({{lang-en|transmission}}) adalah sebuah pemancar [[telekomunikasi]] yang bertujuan untuk memancarkan sinyal ''Radio FrekuensiFrequency'' (RF) yang membawa sinyal informasi berupa gambar (Video) dan suara (Audio), sehingga dapat diterima oleh pesawat penerima (''Receiver'') TV di daerah yang tercakup/tercover oleh pemancar TV tersebut.
 
Dalam rekayasa frekuensi radio , saluran '''transmisi''' adalah kabel khusus atau struktur lain yang dirancang untuk melakukan arus bolak-balik frekuensi radio , yaitu arus dengan frekuensi yang cukup tinggi sehingga sifat gelombangnya harus diperhitungkan. Saluran transmisi digunakan untuk tujuan seperti menghubungkan pemancar dan penerima radio dengan antena mereka (''feed'' atau ''feeder''), mendistribusikan sinyal televisi kabel , panggilan routing trunklines antara pusat-pusat switching telepon, koneksi jaringan komputer dan bus data komputer kecepatan tinggi.
== Lihat juga ==
'''Saluran transmisi artifisial'''
 
Artikel ini mencakup saluran transmisi dua konduktor seperti saluran paralel (saluran tangga), kabel koaksial, ''stripline'' , dan ''microstrip''. Beberapa sumber juga merujuk pada pandu gelombang , pandu gelombangdielektrik , dan bahkan serat optik sebagai saluran transmisi, namun saluran ini memerlukan teknik analitik yang berbeda sehingga tidak dicakup oleh artikel ini; lihat Waveguide (elektromagnetisme) .
Dalam telekomunikasi, saluran transmisi artifisial adalah jaringan listrik dua port yang memiliki impedansi karakteristik, waktu tunda transmisi, pergeseran fasa, atau parameter lain dari saluran transmisi nyata. Ini dapat digunakan untuk mensimulasikan saluran transmisi nyata dalam satu atau beberapa hal ini. Garis buatan awal digunakan dalam penelitian telepon dan mengambil bentuk kaskade equalizer fase kisi untuk memberikan penundaan yang diperlukan. Sirkuit fase kisi diciptakan oleh Otto Zobel pada 1920-an.
 
== Ikhtisar ==
'''Kecepatan fase'''
Kabel listrik biasa cukup untuk membawa arus bolak-balik frekuensi rendah (AC), seperti daya listrik , yang membalikkan arah 100 hingga 120 kali per detik, dan sinyal audio . Namun, mereka tidak dapat digunakan untuk membawa arus dalam rentang frekuensi radio , di atas sekitar 30 kHz, karena energi cenderung memancarkan kabel sebagai gelombang radio , yang menyebabkan hilangnya daya. Arus frekuensi radio juga cenderung memantul dari diskontinuitas pada kabel seperti konektor dan sambungan, dan bergerak turun kembali ke arah sumber. Refleksi ini bertindak sebagai hambatan, mencegah daya sinyal mencapai tujuan. saluran transmisi menggunakan konstruksi khusus, dan pencocokan impedansi , untuk membawa sinyal elektromagnetik dengan pantulan minimal dan kehilangan daya. Ciri pembeda dari sebagian besar saluran transmisi adalah bahwa mereka memiliki dimensi penampang yang seragam sepanjangnya, memberi mereka ''impedansi yang'' seragam, yang disebut impedansi karakteristik , untuk mencegah refleksi. Jenis-jenis saluran transmisi termasuk saluran paralel ( ladder line , twisted pair ), kabel coaxial , dan saluran transmisi planar seperti stripline dan microstrip . Semakin tinggi frekuensi gelombang elektromagnetik bergerak melalui kabel atau media tertentu, semakin pendek panjang gelombang gelombang. Saluran transmisi menjadi perlu ketika panjang gelombang frekuensi yang ditransmisikan cukup pendek sehingga panjang kabel menjadi bagian penting dari panjang gelombang.
 
Pada frekuensi gelombang mikro dan di atasnya, daya yang hilang pada saluran transmisi menjadi berlebihan, dan sebagai gantinya, pandu gelombang digunakan, yang berfungsi sebagai "pipa" untuk membatasi dan memandu gelombang elektromagnetik. Beberapa sumber mendefinisikan pandu gelombang sebagai jenis saluran transmisi; Namun, artikel ini tidak akan memasukkan mereka. Pada frekuensi yang bahkan lebih tinggi, dalam terahertz , inframerah dan rentang yang terlihat , pandu gelombang pada gilirannya menjadi lossy, dan metode optik , (seperti lensa dan cermin), digunakan untuk memandu gelombang elektromagnetik.
Kecepatan fase dari gelombang adalah tingkat di mana fase gelombang merambat di ruang angkasa. Ini adalah kecepatan di mana komponen frekuensi gelombang bergerak. Untuk komponen seperti itu, setiap fase gelombang tertentu (misalnya, puncak) akan tampak bergerak dengan kecepatan fase. Kecepatan panjang gelombang diberikan dalam bentuk λ (lambda) dan periode waktu T sebagai
 
Teori perambatan gelombang suara sangat mirip secara matematis dengan teori gelombang elektromagnetik, sehingga teknik dari teori saluran transmisi juga digunakan untuk membangun struktur untuk melakukan gelombang akustik; dan ini disebut saluran transmisi akustik .
v p = λ T.
 
== Sejarah ==
Secara ekuivalen, dalam hal frekuensi sudut gelombang yang, yang menentukan perubahan sudut per unit waktu, dan bilangan gelombang (atau bilangan gelombang sudut) k, yang mewakili proporsionalitas antara frekuensi sudut ω dan kecepatan linier (kecepatan rambat) νp,
Analisis matematis tentang perilaku saluran transmisi listrik muncul dari karya James Clerk Maxwell , Lord Kelvin dan Oliver Heaviside . Pada tahun 1855 Lord Kelvin merumuskan model difusi arus dalam kabel bawah laut. Model ini dengan benar memprediksi kinerja buruk kabel telegraf kapal selam trans-Atlantik 1858. Pada tahun 1885 Heaviside menerbitkan makalah pertama yang menggambarkan analisisnya tentang propagasi dalam kabel dan bentuk modern dari persamaan telegrapher .
<br />
== Penerapan ==
Dalam banyak rangkaian listrik , panjang kabel yang menghubungkan komponen sebagian besar dapat diabaikan. Artinya, tegangan pada kabel pada waktu tertentu dapat dianggap sama di semua titik. Namun, ketika tegangan berubah dalam interval waktu yang sebanding dengan waktu yang dibutuhkan sinyal untuk melakukan perjalanan ke kawat, panjangnya menjadi penting dan kawat harus diperlakukan sebagai saluran transmisi. Dengan kata lain, panjang kawat penting ketika sinyal memasukkan komponen frekuensi dengan panjang gelombang yang sesuai sebanding dengan atau kurang dari panjang kawat.
 
Aturan umum adalah bahwa kabel atau kawat harus diperlakukan sebagai saluran transmisi jika panjangnya lebih dari 1/10 dari panjang gelombang. Pada panjang ini penundaan fase dan gangguan dari setiap refleksi pada saluran menjadi penting dan dapat menyebabkan perilaku yang tidak terduga dalam sistem yang belum dirancang dengan hati-hati menggunakan teori saluran transmisi.
v p = ω k
 
== Empat Model Terminal ==
Untuk memahami dari mana persamaan ini berasal, pertimbangkan gelombang sinus dasar, A cos (kx - ωt). Setelah waktu t, sumber telah menghasilkan ωt / 2π = ft osilasi. Setelah waktu yang sama, front gelombang awal telah disebarkan jauh dari sumber melalui ruang ke jarak x ke jumlah osilasi yang sama, kx = ωt.
[[Berkas:Empat model terminal.jpg|jmpl|300x300px|''Variasi pada simbol elektronik skematis untuk saluran transmisi'']]
Untuk keperluan analisis, saluran transmisi listrik dapat dimodelkan sebagai jaringan dua-port (juga disebut quadripole), sebagai berikut:
[[Berkas:Transmission line 4 port.svg|pus|jmpl|362x362px]]
Dalam kasus yang paling sederhana, jaringan diasumsikan linier (yaitu tegangan kompleks di kedua port sebanding dengan arus kompleks yang mengalir ke dalamnya ketika tidak ada pantulan), dan kedua port diasumsikan dapat dipertukarkan. Jika saluran transmisi seragam sepanjang, maka perilakunya sebagian besar dijelaskan oleh parameter tunggal yang disebut ''impedansi karakteristik'' , simbol Z0. Ini adalah rasio dari tegangan kompleks dari gelombang yang diberikan ke arus kompleks dari gelombang yang sama di setiap titik di saluran. Nilai tipikal Z <sub>0</sub> adalah 50 atau 75 ohm untuk kabel koaksial , sekitar 100 ohm untuk pasangan kabel bengkok, dan sekitar 300 ohm untuk jenis umum pasangan tidak berpilin yang digunakan dalam transmisi radio.
 
Saat mengirimkan daya ke saluran transmisi, biasanya diinginkan bahwa daya sebanyak mungkin akan diserap oleh beban dan sesedikit mungkin akan dipantulkan kembali ke sumbernya. Ini dapat dipastikan dengan membuat impedansi beban sama dengan Z <sub>0</sub> , dalam hal ini saluran transmisi dikatakan ''cocok'' .
Dengan demikian kecepatan rambat v adalah v = x / t = ω / k. Gelombang merambat lebih cepat ketika osilasi frekuensi yang lebih tinggi didistribusikan kurang padat di ruang angkasa. [2] Secara formal, Φ = kx - ωt adalah fase. Karena ω = ΦdΦ / dt dan k = + dΦ / dx, kecepatan gelombang adalah v = dx / dt = ω / k.
[[Berkas:Transmision line definition.png|kiri|jmpl|500x500px|''Saluran transmisi diambil sebagai dua kabel hitam.Pada jarak x ke saluran, ada arus I(x) yang berjalan melalui masing-masing kabel, dan ada perbedaan tegangan V(x) antara kabel. Jika arus dan tegangan berasal dari gelombang tunggal (tanpa refleksi), maka'' ''V(x) / I(x) = Z <sub>0</sub> , di mana Z <sub>0</sub> adalah impedansi karakteristik saluran.'']]
Beberapa daya yang dimasukkan ke dalam saluran transmisi hilang karena hambatannya.Efek ini disebut kerugian ''ohmik'' atau ''resistif'' (lihat pemanasan ohmik ). Pada frekuensi tinggi, efek lain yang disebut ''kerugian dielektrik'' menjadi signifikan, menambah kerugian yang disebabkan oleh resistensi. Kehilangan dielektrik disebabkan ketika bahan isolasi di dalam saluran transmisi menyerap energi dari medan listrik bolak-balik dan mengubahnya menjadi panas (lihat pemanasan dielektrik ). Saluran transmisi dimodelkan dengan resistansi (R) dan induktansi (L) secara seri dengan kapasitansi (C) dan konduktansi (G) secara paralel.Hambatan dan konduktansi berkontribusi terhadap hilangnya saluran transmisi.
 
Kehilangan total daya dalam saluran transmisi sering ditentukan dalam desibel per meter (dB / m), dan biasanya tergantung pada frekuensi sinyal. Pabrikan sering menyediakan bagan yang menunjukkan kerugian dalam dB / m pada rentang frekuensi. Hilangnya 3 dB kira-kira setara dengan separuh dari daya.
'''Gelombang longitudinal'''
 
Saluran transmisi frekuensi tinggi dapat didefinisikan sebagai saluran yang dirancang untuk membawa gelombang elektromagnetik yang panjang gelombangnya lebih pendek dari atau sebanding dengan panjang saluran. Dalam kondisi ini, perkiraan yang berguna untuk perhitungan pada frekuensi yang lebih rendah tidak lagi akurat. Ini sering terjadi pada sinyal radio , microwave dan optik , filter optik mesh logam , dan dengan sinyal yang ditemukan di sirkuit digital berkecepatan tinggi .
Gelombang longitudinal adalah gelombang di mana perpindahan media berada dalam arah yang sama dengan, atau arah yang berlawanan dengan, arah propagasi gelombang. Gelombang longitudinal mekanis juga disebut gelombang kompresional atau kompresi, karena mereka menghasilkan kompresi dan penghalusan ketika bepergian melalui medium, dan gelombang tekanan, karena mereka menghasilkan kenaikan dan penurunan tekanan.
 
== Persamaan Telegrapher ==
Jenis utama gelombang lainnya adalah gelombang transversal, di mana perpindahan medium berada pada sudut yang tepat terhadap arah rambat. Beberapa gelombang transversal bersifat mekanis, artinya gelombang membutuhkan media elastis untuk dilalui. Gelombang mekanik transversal juga disebut "gelombang geser".
'''Persamaan telegrapher''' (atau hanya '''persamaan telegraf''' ) adalah sepasang persamaan diferensial linier yang menggambarkan tegangan ('''V''') dan arus ('''I''') pada saluran transmisi listrik dengan jarak dan waktu. Mereka dikembangkan oleh Oliver Heaviside yang menciptakan ''model saluran transmisi'' , dan didasarkan pada Persamaan Maxwell.
[[Berkas:Transmission line element.svg|jmpl|Representasi{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} skematik dari komponen dasar saluran transmisi.]]
Model saluran transmisi adalah contoh dari model elemen terdistribusi . Ini mewakili saluran transmisi sebagai rangkaian tak terbatas dari komponen dasar dua-port, masing-masing mewakili segmen pendek yang sangat pendek dari saluran transmisi:
 
* Resistansi '''R''' didistribusikan konduktor diwakili oleh resistor seri (dinyatakan dalam ohm per satuan panjang).
Dengan akronim, "gelombang longitudinal" dan "gelombang transversal" kadang-kadang disingkat oleh beberapa penulis sebagai "gelombang-L" dan "gelombang-T" masing-masing untuk kenyamanan mereka sendiri. Sementara dua akronim ini memiliki makna khusus dalam seismologi (gelombang-L untuk gelombang Cinta atau gelombang panjang ) dan elektrokardiografi (lihat gelombang T), beberapa penulis memilih untuk menggunakan "gelombang-l" (huruf kecil 'L') dan "t-gelombang" sebagai gantinya, meskipun mereka tidak umum ditemukan dalam tulisan-tulisan fisika kecuali untuk beberapa buku sains populer.
 
* Induktansi '''L''' didistribusikan (karena medan magnet di sekitar kabel, induktansi sendiri , dll.) diwakili oleh induktor seri (dalam henries per satuan panjang).
Gelombang longitudinal termasuk gelombang suara (getaran dalam tekanan, partikel perpindahan, dan kecepatan partikel yang diperbanyak dalam media elastis) dan gelombang-P seismik (diciptakan oleh gempa bumi dan ledakan). Dalam gelombang longitudinal, perpindahan media sejajar dengan rambatan gelombang, dan gelombang bisa lurus atau bulat. Gelombang di sepanjang mainan Slinky yang diregangkan, di mana jarak antara kumparan meningkat dan menurun, adalah visualisasi yang baik
 
* Kapasitansi '''C''' antara dua konduktor diwakili oleh kapasitor shunt (dalam farad per satuan panjang).
'''Transmisi daya frekuensi radio'''
 
* Konduktansi '''G''' dari bahan dielektrik yang memisahkan dua konduktor diwakili oleh resistor shunt antara kabel sinyal dan kabel kembali (dalam siemens per satuan panjang).
Transmisi daya frekuensi radio adalah transmisi daya output pemancar ke antena. Ketika antena tidak terletak dekat dengan pemancar, jalur transmisi khusus diperlukan.
 
Model terdiri dari ''serangkaian'' elemen ''tak terbatas'' yang ditunjukkan pada gambar, dan nilai-nilai komponen ditentukan ''per satuan panjang'' sehingga gambar komponen dapat menyesatkan '''R''','''L''','''C''' dan '''G''' mungkin juga merupakan fungsi frekuensi. Notasi alternatif adalah menggunakan '''R'<nowiki/>''','''L'<nowiki/>''','''C'<nowiki/>''' dan '''G'''' untuk menekankan bahwa nilai adalah turunan sehubungan dengan panjang. Kuantitas ini juga dapat dikenal sebagai konstanta saluran primer untuk membedakan dari konstanta saluan sekunder yang diturunkan darinya, ini adalah konstanta propagasi , konstanta atenuasi dan konstanta fasa.
Jenis saluran transmisi yang paling umum untuk keperluan ini adalah kabel koaksial berdiameter besar. Pada pemancar daya tinggi, garis kandang digunakan. Garis sangkar adalah sejenis saluran udara yang serupa dalam konstruksi dengan kabel koaksial. Konduktor interior dipegang oleh isolator yang dipasang pada perangkat melingkar di tengah. Pada perangkat melingkar, ada kabel untuk kutub lain dari garis.
 
Tegangan saluran '''V(x)''' dan arus '''I(x)''' dapat dinyatakan dalam domain frekuensi sebagai
''Cage lines'' digunakan pada pemancar berdaya tinggi di Eropa, seperti pemancar gelombang panjang Topolna, pemancar gelombang panjang Solec Kujawski dan beberapa pemancar berdaya tinggi lainnya untuk gelombang panjang, menengah dan pendek.
 
<math>{\displaystyle {\frac {\partial V(x)}{\partial x}}=-(R+j\,\omega \,L)\,I(x)}</math>
Untuk UHF dan VHF, garis Goubau terkadang digunakan. Mereka terdiri dari kawat tunggal terisolasi yang dipasang pada isolator. Di jalur Goubau, gelombang bergerak sebagai arus longitudinal yang dikelilingi oleh medan EM transversal. Untuk gelombang mikro, pandu gelombang digunakan.
 
<math>{\displaystyle {\frac {\partial I(x)}{\partial x}}=-(G+j\,\omega \,C)\,V(x)~\,.}</math>
'''Time-domain reflectometer (TDR)'''
 
=== Kasus Khusus dari Saluran Tanpa Kerugian ===
''Time-domain reflectometer (TDR)'' adalah instrumen elektronik yang menggunakan time-domain reflectometry untuk mengkarakterisasi dan menemukan kesalahan pada kabel logam (misalnya, kawat pasangan bengkok atau kabel coaxial). Itu juga dapat digunakan untuk menemukan diskontinuitas dalam konektor, papan sirkuit cetak, atau jalur listrik lainnya. Perangkat yang setara untuk serat optik adalah reflectometer domain waktu optik.
Ketika elemen '''''R''''' dan '''''G''''' sangat kecil saluran transmisi dianggap sebagai struktur lossless. Dalam kasus hipotetis ini, model hanya bergantung pada '''''L''''' dan '''''C''''' elemen yang sangat menyederhanakan analisis. Untuk saluran transmisi lossless, persamaan Telegrapher kondisi tunak orde kedua adalah:
 
<math>{\displaystyle {\frac {\partial ^{2}V(x)}{\partial x^{2}}}+\omega ^{2}L\,C\,V(x)=0}</math>
TDR mengukur refleksi di sepanjang konduktor. Untuk mengukur pantulan tersebut, TDR akan mengirimkan sinyal insiden ke konduktor dan mendengarkan pantulannya. Jika konduktor memiliki impedansi yang seragam dan diakhiri dengan semestinya, maka tidak akan ada pantulan dan sinyal insiden yang tersisa akan diserap pada ujung jauh oleh terminasi. Sebaliknya, jika ada variasi impedansi, maka beberapa sinyal insiden akan dipantulkan kembali ke sumbernya. TDR pada prinsipnya mirip dengan radar.
 
<math>{\displaystyle {\frac {\partial ^{2}I(x)}{\partial x^{2}}}+\omega ^{2}L\,C\,I(x)=0~\,.}</math>
'''''Refleksi'''''
 
Ini adalah persamaan gelombang yang memiliki gelombang bidang dengan kecepatan rambat yang sama di arah maju dan mundur sebagai solusi. Signifikansi fisik dari hal ini adalah bahwa gelombang elektromagnetik merambat ke bawah saluran transmisi dan secara umum, ada komponen yang dipantulkan yang mengganggu sinyal asli. Persamaan ini dasar untuk teori saluran transmisi.
Secara umum, pantulan akan memiliki bentuk yang sama dengan sinyal datang, tetapi tanda dan besarnya tergantung pada perubahan tingkat impedansi. Jika ada peningkatan langkah impedansi, maka pantulan akan memiliki tanda yang sama dengan sinyal insiden; jika ada langkah penurunan impedansi, refleksi akan memiliki tanda sebaliknya. Besarnya refleksi tidak hanya tergantung pada jumlah perubahan impedansi, tetapi juga pada kehilangan konduktor.
 
=== Kasus Umum dari Sebuah Saluran dengan Kerugian ===
Refleksi diukur pada output / input ke TDR dan ditampilkan atau diplot sebagai fungsi waktu. Atau, tampilan dapat dibaca sebagai fungsi panjang kabel karena kecepatan perambatan sinyal hampir konstan untuk media transmisi yang diberikan.
Dalam kasus umum ketentuan kerugian, '''R''' dan '''G''' , keduanya disertakan, dan bentuk lengkap persamaan Telegrapher menjadi:
 
<math>{\displaystyle {\frac {\partial ^{2}V(x)}{\partial x^{2}}}=\gamma ^{2}V(x)\,}</math>
Karena sensitivitasnya terhadap variasi impedansi, TDR dapat digunakan untuk memverifikasi karakteristik impedansi kabel, lokasi sambungan dan sambungan serta kerugian terkait, dan memperkirakan panjang kabel.
 
<math>{\displaystyle {\frac {\partial ^{2}I(x)}{\partial x^{2}}}=\gamma ^{2}I(x)\,}</math>
'''''Sinyal insiden'''''
 
Dimana <math>{\displaystyle\gamma}</math> adalah konstanta propagasi ( kompleks ). Persamaan ini dasar untuk teori saluran transmisi. Mereka juga persamaan gelombang , dan memiliki solusi yang mirip dengan kasus khusus, tetapi merupakan campuran sinus dan cosinus dengan faktor peluruhan eksponensial. Pemecahan untuk konstanta propagasi <math>{\displaystyle\gamma}</math> dalam hal parameter primer '''R''','''L''','''G''' dan '''C''' diberikan:
TDR menggunakan sinyal insiden yang berbeda. Beberapa TDR mentransmisikan pulsa di sepanjang konduktor; resolusi instrumen semacam itu sering kali lebar pulsa. Pulsa sempit dapat menawarkan resolusi yang baik, tetapi mereka memiliki komponen sinyal frekuensi tinggi yang dilemahkan pada kabel panjang. Bentuk denyut nadi sering setengah sinusoid. Untuk kabel yang lebih panjang, lebar pulsa yang lebih luas digunakan.
 
<math>{\displaystyle \gamma ={\sqrt {(R+j\,\omega \,L)(G+j\,\omega \,C)\,}}}</math>
Langkah waktu naik cepat juga digunakan. Alih-alih mencari pantulan dari denyut nadi yang lengkap, instrumen lebih mementingkan sisi naik, yang bisa sangat cepat. Sebuah teknologi tahun 1970-an TDR menggunakan langkah-langkah dengan kenaikan waktu 25 ps.
 
dan impedansi karakteristik dapat dinyatakan sebagai
TDR lain mentransmisikan sinyal kompleks dan mendeteksi pantulan dengan teknik korelasi. Lihat reflectometry domain waktu spread-spektrum.
 
<math>{\displaystyle Z_{0}={\sqrt {{\frac {R+j\,\omega \,L}{G+j\,\omega \,C}}\,}}~\,.}</math>
*[[Saluran komunikasi]]
{{Komunikasi-stub}}<br />
 
Solusi untuk '''V(x)''' dan '''I(x)''' adalah:
== =Penerapan ==
Dalam banyak rangkaian listrik , panjang kabel yang menghubungkan komponen sebagian besar dapat diabaikan. Artinya, tegangan pada kabel pada waktu tertentu dapat dianggap sama di semua titik. Namun, ketika tegangan berubah dalam interval waktu yang sebanding dengan waktu yang dibutuhkan sinyal untuk melakukan perjalanan ke kawat, panjangnya menjadi penting dan kawat harus diperlakukan sebagai saluran transmisi. Dengan kata lain, panjang kawat penting ketika sinyal memasukkan komponen frekuensi dengan panjang gelombang yang sesuai sebanding dengan atau kurang dari panjang kawat.
 
<math>{\displaystyle V(x)=V_{(+)}e^{-\gamma \,x}+V_{(-)}e^{+\gamma \,x}\,}</math>
Aturan umum adalah bahwa kabel atau kawat harus diperlakukan sebagai saluran transmisi jika panjangnya lebih dari 1/10 dari panjang gelombang. Pada panjang ini penundaan fase dan gangguan dari setiap refleksi pada saluran menjadi penting dan dapat menyebabkan perilaku yang tidak terduga dalam sistem yang belum dirancang dengan hati-hati menggunakan teori saluran transmisi.
<br />
 
<math>{\displaystyle I(x)={\frac {1}{Z_{0}}}\,\left(V_{(+)}e^{-\gamma \,x}-V_{(-)}e^{+\gamma \,x}\right)~\,.}</math>
== =Empat Model Terminal ==
[[Berkas:Empat model terminal.jpg|jmpl|300x300px|''Variasi pada simbol elektronik skematis untuk saluran transmisi'']]
Untuk keperluan analisis, saluran transmisi listrik dapat dimodelkan sebagai jaringan dua-port (juga disebut quadripole), sebagai berikut:
[[Berkas:Two port network.jpg.png|pus|jmpl|362x362px]]
Dalam kasus yang paling sederhana, jaringan diasumsikan linier (yaitu tegangan kompleks di kedua port sebanding dengan arus kompleks yang mengalir ke dalamnya ketika tidak ada pantulan), dan kedua port diasumsikan dapat dipertukarkan. Jika saluran transmisi seragam sepanjang, maka perilakunya sebagian besar dijelaskan oleh parameter tunggal yang disebut ''impedansi karakteristik'' , simbol Z0. Ini adalah rasio dari tegangan kompleks dari gelombang yang diberikan ke arus kompleks dari gelombang yang sama di setiap titik di saluran. Nilai tipikal Z <sub>0</sub> adalah 50 atau 75 ohm untuk kabel koaksial , sekitar 100 ohm untuk pasangan kabel bengkok, dan sekitar 300 ohm untuk jenis umum pasangan tidak berpilin yang digunakan dalam transmisi radio.
 
Konstanta <math>{\displaystyle V _ {(\pm)}}</math> harus ditentukan dari kondisi batas. Untuk tegangan pulsa <math>{\displaystyle V _ {\mathrm {in}} (t) \,}</math>, mulai dari <math>{\displaystyle x = 0}</math>dan bergerak pada arah <math>{\displaystyle x}</math> positif, kemudian pulsa yang dikirim pada posisi <math>{\displaystyle x}</math> dapat diperoleh dengan menghitung Transformasi Fourier, <math>{\displaystyle {\tilde {V}} (\omega)}</math>dari <math>{\displaystyle V _ {\mathrm {in}} (t) \,}</math> , menipiskan setiap komponen frekuensi dengan<math>{\displaystyle e ^ {- \operatorname {Re} (\gamma)\, x} \,}</math>, memajukan fase dengan <math>{\displaystyle - \operatorname {Im} (\gamma) \, x \,}</math>, dan mengambil Fourier Transform terbalik . Bagian nyata dan imajiner dari <math>{\displaystyle \gamma}</math> dapat dihitung sebagai
Saat mengirimkan daya ke saluran transmisi, biasanya diinginkan bahwa daya sebanyak mungkin akan diserap oleh beban dan sesedikit mungkin akan dipantulkan kembali ke sumbernya. Ini dapat dipastikan dengan membuat impedansi beban sama dengan Z <sub>0</sub> , dalam hal ini saluran transmisi dikatakan ''cocok'' .
[[Berkas:Transmision line definition.png|kiri|jmpl|500x500px|''Saluran transmisi diambil sebagai dua kabel hitam.Pada jarak x ke saluran, ada arus I(x) yang berjalan melalui masing-masing kabel, dan ada perbedaan tegangan V(x) antara kabel. Jika arus dan tegangan berasal dari gelombang tunggal (tanpa refleksi), maka'' ''V(x) / I(x) = Z <sub>0</sub> , di mana Z <sub>0</sub> adalah impedansi karakteristik saluran.'']]
Beberapa daya yang dimasukkan ke dalam saluran transmisi hilang karena hambatannya.Efek ini disebut kerugian ''ohmik'' atau ''resistif'' (lihat pemanasan ohmik ). Pada frekuensi tinggi, efek lain yang disebut ''kerugian dielektrik'' menjadi signifikan, menambah kerugian yang disebabkan oleh resistensi. Kehilangan dielektrik disebabkan ketika bahan isolasi di dalam saluran transmisi menyerap energi dari medan listrik bolak-balik dan mengubahnya menjadi panas (lihat pemanasan dielektrik ). Saluran transmisi dimodelkan dengan resistansi (R) dan induktansi (L) secara seri dengan kapasitansi (C) dan konduktansi (G) secara paralel.Hambatan dan konduktansi berkontribusi terhadap hilangnya saluran transmisi.
 
<math>{\displaystyle \operatorname {Re} (\gamma )=\alpha =(a^{2}+b^{2})^{1/4}\cos(\psi )\,}</math>
Kehilangan total daya dalam saluran transmisi sering ditentukan dalam desibel per meter (dB / m), dan biasanya tergantung pada frekuensi sinyal. Pabrikan sering menyediakan bagan yang menunjukkan kerugian dalam dB / m pada rentang frekuensi. Hilangnya 3 dB kira-kira setara dengan separuh dari daya.
 
<math>{\displaystyle \operatorname {Im} (\gamma )=\beta =(a^{2}+b^{2})^{1/4}\sin(\psi )\,}</math>
Saluran transmisi frekuensi tinggi dapat didefinisikan sebagai saluran yang dirancang untuk membawa gelombang elektromagnetik yang panjang gelombangnya lebih pendek dari atau sebanding dengan panjang saluran. Dalam kondisi ini, perkiraan yang berguna untuk perhitungan pada frekuensi yang lebih rendah tidak lagi akurat. Ini sering terjadi pada sinyal radio , microwave dan optik , filter optik mesh logam , dan dengan sinyal yang ditemukan di sirkuit digital berkecepatan tinggi .
 
<br />
dengan
 
<math>{\displaystyle a~\equiv ~R\,G\,-\omega ^{2}L\,C\ ~=~\omega ^{2}L\,C\,\left[\left({\frac {R}{\omega L}}\right)\left({\frac {G}{\omega C}}\right)-1\right]}</math>
 
<math>{\displaystyle b~\equiv ~\omega \,C\,R+\omega \,L\,G~=~\omega ^{2}L\,C\,\left({\frac {R}{\omega \,L}}+{\frac {G}{\omega \,C}}\right)}</math>
 
rumus ruas kanan digunakan ketika tidak ada '''L''', juga tidak '''C''' juga tidak <math>{\displaystyle \omega}</math>adalah nol, dan dengan
 
<math>{\displaystyle \psi ~\equiv ~{\tfrac {1}{2}}\operatorname {atan2} (b,a)\,}</math>
 
di mana atan2 adalah bentuk fungsi dua-parameter arctan yang didefinisikan di mana-mana, dengan nilai arbitrer nol ketika kedua argumen adalah nol.
 
=== Khusus, Kasus Kerugian Rendah ===
Untuk kerugian kecil dan frekuensi tinggi, persamaan umum dapat disederhanakan: Jika <math>{\displaystyle {\tfrac {R} {\omega \, L}} \ll 1}</math>dan <math>{\displaystyle {\tfrac {G} {\omega \, C}} \ll 1}</math>kemudian
 
<math>{\displaystyle \operatorname {Re} (\gamma )=\alpha \approx {\tfrac {1}{2}}{\sqrt {L\,C\,}}\,\left({\frac {R}{L}}+{\frac {G}{C}}\right)\,}</math>
 
<math>{\displaystyle \operatorname {Im} (\gamma )=\beta \approx \omega \,{\sqrt {L\,C\,}}~.\,}</math>
 
Memperhatikan bahwa kemajuan dalam fase oleh <math>{\displaystyle -\omega \,\delta }</math> setara dengan penundaan waktu oleh <math>{\displaystyle \delta}</math>, <math>{\displaystyle V_ {out} (t)}</math> dapat dengan mudah dihitung dengan
 
<math>{\displaystyle V_{\mathrm {out} }(x,t)\approx V_{\mathrm {in} }(t-{\sqrt {L\,C\,}}\,x)\,e^{-{\tfrac {1}{2}}{\sqrt {L\,C\,}}\,\left({\frac {R}{L}}+{\frac {G}{C}}\right)\,x}.\,}</math>
 
=== Kondisi Heaviside ===
Kondisi Heaviside adalah kasus khusus di mana gelombang bergerak turun tanpa distorsi dispersi . Kondisi ini terjadi ketika
 
<math>{\displaystyle {\frac {G}{C}}={\frac {R}{L}}}</math>
 
== =Impedansi Input Saluran Transmisi ==
[[Berkas:SmithChartLineLength.svg|al=Melihat ke arah beban melalui panjang (l) dari saluran transmisi lossless, perubahan impedansi sebagai l meningkat, mengikuti lingkaran biru pada grafik Smith impedansi ini.(Impedansi ini dicirikan oleh koefisien pantulannya , yang merupakan tegangan pantul dibagi dengan voltase kejadian). Lingkaran biru, yang berpusat di dalam bagan, kadang-kadang disebut lingkaran SWR (kependekan dari rasio gelombang berdiri konstan ).|jmpl|Melihat ke arah beban melalui panjang (l) {\ displaystyle \ ell}dari saluran transmisi lossless, perubahan impedansi sebagai l{\ displaystyle \ ell} meningkat, mengikuti lingkaran biru pada grafik Smith impedansi ini.(Impedansi ini dicirikan oleh koefisien pantulannya , yang merupakan tegangan pantul dibagi dengan voltase kejadian). Lingkaran biru, yang berpusat di dalam bagan, kadang-kadang disebut ''lingkaran SWR'' (kependekan dari ''rasio gelombang berdiri konstan'' ).]]
Impedansi karakteristik Zo dari saluran transmisi adalah rasio amplitudo gelombang tegangan tunggal dengan gelombang arusnya. Karena sebagian besar saluran transmisi juga memiliki gelombang pantul, impedansi karakteristik umumnya bukan impedansi yang diukur pada saluran.
 
Impedansi diukur pada jarak tertentu l dari impedansi beban ZL dapat dinyatakan sebagai
 
<math>Z_\mathrm{in}\left(\ell\right)=\frac{V(\ell)}{I(\ell)} = Z_0 \frac{1 + \mathit{\Gamma}_\mathrm{L} e^{-2 \gamma \ell}}{1 - \mathit{\Gamma}_\mathrm{L} e^{-2 \gamma \ell}}</math>,
 
dimana γ adalah konstanta propagasi dan I'L= (ZL- Z0)/(ZL+ Z0 ) adalah koefisien refleksi tegangan yang diukur pada ujung beban saluran transmisi. Atau, rumus di atas dapat disusun kembali untuk menyatakan impedansi input jika impedansi beban lebih besar daripada koefisien refleksi tegangan beban.
 
<math>Z_\mathrm{in}(\ell) = Z_0\,\frac{Z_\mathrm{L} + Z_0 \tanh\left(\gamma \ell\right)}{Z_0 + Z_\mathrm{L}\,\tanh\left(\gamma \ell \right)}</math>.
Baris 103 ⟶ 136:
Z_\mathrm{in}(\ell) = Z_0 \frac{Z_\mathrm{L} + j\,Z_0\,\tan(\beta \ell)}{Z_0 + j\,Z_\mathrm{L}\tan(\beta \ell)}
</math>
dimana β= 2π/(panjang gelombang) adalah bilangan gelombang itu .
 
Dalam menghitung β panjang gelombang umumnya berbeda di dalam saluran transmisi dengan apa yang akan di ruang bebas. Konsekuensinya, konstanta kecepatan material yang dibuat oleh saluran transmisi perlu diperhitungkan saat melakukan perhitungan seperti itu.
 
=== Kasus khusus saluran transmisi lossless ===
 
==== setengah panjang gelombang ====
Untuk kasus khusus dimana βl=nπ di mana n adalah bilangan bulat (artinya panjang garissaluran adalah kelipatan setengah panjang gelombang), rumus berkurang ke impedansi beban sehingga
 
Zin = ZL
Baris 124 ⟶ 157:
 
=== Beban yang cocok ===
Kasus khusus lain adalah ketika impedansi beban sama dengan impedansi karakteristik saluran (yaitu saluran dicocokkan ), dalam hal ini impedansi berkurang ke impedansi karakteristik saluran sehingga
 
Zin = ZL = Z0
 
untuk semua l dan semua lambda (panjang gelombang).
[[Berkas:Transmission line animation open short2.gif|jmpl|220x220px|Gelombang berdiri pada saluran transmisi dengan beban sirkuit terbuka (atas), dan beban sirkuit pendek (bawah). Titik-titik hitam mewakili elektron, dan panah menunjukkan medan listrik.]]
 
=== Rangkaian hubung singkat ===
Untuk kasus korsletinghubung singkat (ZL=0), impedansi input murni imajiner dan fungsi periodik dari posisi dan panjang gelombang (frekuensi)
 
<math>Z_\mathrm{in}(\ell) = j\,Z_0\,\tan(\beta \ell). \,</math>
 
=== Rangkaian terbuka ===
Untuk kasus beban terbuka (ZL = ∞ ), impedansi input sekali lagi imajiner dan periodik
 
<math>Z_\mathrm{in}(\ell) = -j\,Z_0 \cot(\beta \ell). \,</math>
 
=== JalurSaluran transmisi bertahap ===
[[Berkas:Segments.jpg|kiri|jmpl|Contoh sederhana dari saluran transmisi stepped yang terdiri dari tiga segmen.]]
Saluran transmisi bertahap digunakan untuk pencocokan impedansi rentang luas. Hal ini dapat dianggap sebagai beberapa segmen saluran transmisi yang dihubungkan secara seri, dengan impedansi karakteristik masing-masing elemen menjadi Z0,i. Impedansi input dapat diperoleh dari aplikasi yang berurutan dari relasi rantai
Baris 147 ⟶ 180:
<math>Z_\mathrm{i+1} = Z_\mathrm{0,i}\,\frac{\,Z_\mathrm{i} + j\,Z_\mathrm{0,i}\,\tan(\beta_\mathrm{i} \ell_\mathrm{i})\,}{Z_\mathrm{0,i} + j\,Z_\mathrm{i}\,\tan(\beta_\mathrm{i} \ell_\mathrm{i})}\,</math>
 
dimana βi adalah nomor gelombang dari i-th segmen saluran transmisi dan li adalah panjang segmen, dan Zi adalah impedansi front-end yang memuat segmen i-th.
[[Berkas:PolarSmith.jpg|jmpl|Lingkaran transformasi impedansi sepanjang saluran transmisi yang karakteristik impedansinya Z<sub>0,i</sub><nowiki> {\ displaystyle Z _ {\ mathrm {0, i}}} lebih kecil dari kabel input Zo{\ displaystyle Z_ {0}}. Dan sebagai hasilnya, kurva impedansi tidak terpusat ke arah {\ displaystyle -x}sumbu -x. Sebaliknya   jika Z</nowiki><sub>0,i</sub><nowiki > {\ displaystyle Z _ {\ mathrm {0, i}}> Z_ {0}}>Zo, kurva impedansi harus off-centered menuju {\ displaystyle + x}sumbu +x.</nowiki>]]
Lingkaran transformasi impedansi sepanjang saluran transmisi yang karakteristik impedansinya Z0,i lebih kecil dari kabel input Zo. Dan sebagai hasilnya, kurva impedansi tidak terpusat ke arah sumbu -x. Sebaliknya jika Z0,i>Zo, kurva impedansi harus off-centered menuju sumbu +x.
 
Karena karakteristik impedansi dari setiap segmen saluran transmisi Z0,i sering berbeda dari kabel input Zo, lingkaran transformasi impedansi tidak terpusat di sepanjang sumbu x dari sumbu Chart Smith yang representasi impedansinya biasanya dinormalisasi oleh Zo.
Saluran transmisi bertahap adalah contoh dari rangkaian elemen terdistribusi . Berbagai macam sirkuit lain juga dapat dibangun dengan saluran transmisi termasuk filter, pembagi daya dan skrup arah.
 
== =KabelJenis KoaksialPraktis ==
 
=== Kabel Koaksial ===
{{Main|Kabel Koaksial}}
GarisKabel koaksial membatasi hampir semua gelombang elektromagnetik ke area di dalam kabel. Oleh karena itu, gariskabel koaksial dapat ditekuk dan dipelintir (tunduk pada batas) tanpa efek negatif, dan dapat diikat ke pendukung konduktif tanpa menyebabkan arus yang tidak diinginkan di dalamnya. Dalam aplikasi frekuensi radio hingga beberapa gigahertz, gelombang merambat hanya dalam mode listrik dan magnetik transversal (TEM), yang berarti bahwa medan listrik dan magnet keduanya tegak lurus terhadap arah propagasi (medan listrik radial, dan medan magnet melingkar). Namun, pada frekuensi yang panjang gelombangnya (dalam dielektrik) secara signifikan lebih pendek dari keliling kabel mode transversal lain dapat merambat. Mode-mode ini diklasifikasikan ke dalam dua grup, mode pemandu gelombang listrik transversal (TE) dan magnetik transversal (TM). Ketika lebih dari satu mode dapat ada, tikungan dan penyimpangan lainnya dalam geometri kabel dapat menyebabkan daya ditransfer dari satu mode ke mode lainnya.
 
Penggunaan yang paling umum untuk kabel koaksial adalah untuk televisi dan sinyal lainnya dengan bandwidth beberapa megahertz. Pada abad ke-20 pertengahan mereka membawa koneksi telepon jarak jauh .
 
=== GarisSaluran planarPlanar ===
{{main|Saluran transmisi Planar }}
 
==== Microstrip ====
[[Berkas:Solec Kujawski longwave antenna feeder.jpg|jmpl|ka|Suatu jenis saluran transmisi yang disebut saluran sangkar , digunakan untuk daya tinggi, aplikasi frekuensi rendah. Fungsinya mirip dengan kabel koaksial besar. Contoh ini adalah saluran umpan antena untuk pemancar radio gelombang panjang di Polandia , yang beroperasi pada frekuensi 225 kHz dan daya 1200 kW.]]
{{Main|microstripMicrostrip}}
Sirkuit mikrostrip menggunakan konduktor datar tipis yang sejajar dengan bidang tanah . Microstrip dapat dibuat dengan memiliki strip tembaga di satu sisi papan sirkuit cetak (PCB) atau substrat keramik sedangkan sisi lainnya adalah bidang tanah kontinu. Lebar strip, ketebalan lapisan isolasi (PCB atau keramik) dan konstanta dielektrik dari lapisan isolasi menentukan impedansi karakteristik. Microstrip adalah struktur terbuka sedangkan kabel koaksial adalah struktur tertutup.
 
Baris 178 ⟶ 213:
Waveguide coplanar terdiri dari strip tengah dan dua konduktor luar yang berdekatan, ketiganya struktur datar yang diendapkan ke substrat isolasi yang sama dan dengan demikian terletak di bidang yang sama ("coplanar"). Lebar konduktor tengah, jarak antara konduktor dalam dan luar, dan permitivitas relatif substrat menentukan impedansi karakteristik saluran transmisi coplanar.
 
=== BarisSaluran seimbang ===
{{Main|GarisSaluran seimbang }}
Saluran berimbangseimbang adalah saluran transmisi yang terdiri dari dua konduktor dengan tipe yang sama, dan impedansi yang sama untuk sirkuit pentanahan dan lainnya. Ada banyak format garissaluran seimbang, di antara yang paling umum adalah twisted pair, star quad, dan twin-lead.
 
==== Twisted pair ====
{{Main|Twisted pair}}
Twisted pair biasanya digunakan untuk komunikasi telepon terestrial. Dalam kabel semacam itu, banyak pasangan dikelompokkan bersama dalam satu kabel tunggal, dari dua hingga beberapa ribu. [9] Format ini juga digunakan untuk distribusi jaringan data di dalam gedung, tetapi kabelnya lebih mahal karena parameter saluran transmisi dikontrol dengan ketat.
 
==== Kabel Empat Bintang quad(Star-Quad) ====
{{Main|kabelKabel Star quadEmpat Bintang}}
[[Berkas:Star_quad.svg|jmpl|250x250px|Kabel Star-quad dimaksudkan untuk digunakan dengan sirkuit dua kawat tunggal atau dua sirkuit dua kawat. Ini sering digunakan dengan sinyal mikrofon dalam audio profesional .]]
intang quad adalah kabel empat konduktor di mana keempat konduktor dipelintir bersama di sekitar sumbu kabel. Kadang-kadang digunakan untuk dua sirkuit, seperti telepon 4-kawat dan aplikasi telekomunikasi lainnya. Dalam konfigurasi ini setiap pasangan menggunakan dua konduktor yang tidak berdekatan. Di lain waktu digunakan untuk saluran tunggal yang seimbang , seperti aplikasi audio dan telepon 2-kawat . Dalam konfigurasi ini dua konduktor yang tidak berbatasan diakhiri bersamaan di kedua ujung kabel, dan dua konduktor lainnya juga diakhiri bersama.
[[Berkas:Star-Quad_Cable_Cross_Section.jpg|jmpl|Penampang kabel star-quad]]
Ketika digunakan untuk dua sirkuit, crosstalk berkurang relatif terhadap kabel dengan dua pasangan bengkok yang terpisah.
[[Berkas:Star-Quad_exploded.jpg|jmpl|Tampilan meledak bintang-quad menunjukkan pusat geometris dari dual-konduktor yang digunakan untuk setiap kaki dari garis seimbang.]]
Ketika digunakan untuk saluran tunggal, seimbang , interferensi magnetik yang diambil oleh kabel datang sebagai sinyal mode umum yang hampir sempurna, yang mudah dilepas oleh transformator kopling.
'''Kabel Star-quad''' adalah '''kabel''' empat konduktor yang memiliki geometri quadrupole khusus yang memberikan kekebalan magnetik ketika digunakan dalam garis seimbang . Empat konduktor digunakan untuk membawa dua kaki dari garis seimbang. Keempat konduktor harus memiliki jarak yang sama dari titik yang sama (biasanya pusat kabel). Keempat konduktor diatur dalam bintang berujung empat (membentuk bujur sangkar). Titik berlawanan dari bintang dihubungkan bersama di setiap ujung kabel untuk membentuk setiap kaki dari sirkuit seimbang.
Manfaat gabungan dari memutar, pensinyalan seimbang, dan pola quadrupole memberikan kekebalan kebisingan yang luar biasa, terutama menguntungkan untuk aplikasi tingkat sinyal rendah seperti kabel mikrofon, bahkan ketika dipasang sangat dekat dengan kabel daya. [10] [11] [12] [13] [14] Kerugiannya adalah bahwa bintang quad, dalam menggabungkan dua konduktor, biasanya memiliki dua kali lipat kapasitansi kabel audio berpilin dan berpelindung dua konduktor yang serupa. Kapasitansi tinggi menyebabkan peningkatan distorsi dan kehilangan frekuensi tinggi yang lebih besar dengan meningkatnya jarak. [15] [16]
 
Kabel quad star sering menggunakan elemen pengisi untuk menahan pusat konduktor dalam pengaturan empat titik simetris tentang sumbu kabel. Semua titik bintang harus terletak pada jarak yang sama dari pusat bintang. Ketika titik-titik yang berlawanan terhubung bersama, mereka bertindak seolah-olah mereka adalah satu konduktor yang terletak di pusat bintang. Konfigurasi ini menempatkan pusat geometris dari masing-masing dua kaki dari rangkaian seimbang di tengah bintang. Untuk medan magnet, kedua kaki sirkuit seimbang tampak berada di tengah tepat bintang. Ini berarti bahwa kedua kaki dari rangkaian seimbang akan menerima interferensi yang sama persis dari medan magnet dan sinyal interferensi mode-umum akan dihasilkan. Sinyal gangguan mode umum ini akan ditolak oleh penerima yang seimbang.
 
Imunitas magnetik dari kabel quad bintang adalah fungsi dari keakuratan geometri star-quad, akurasi penyeimbang impedansi, dan rasio penolakan mode-umum dari penerima yang seimbang. Kabel Star-quad biasanya memberikan pengurangan 10 dB hingga 30 dB pada interferensi yang disebabkan oleh magnet.
 
===== Keuntungan =====
Ketika kabel star-quad digunakan untuk saluran seimbang tunggal, seperti aplikasi audio profesional dan telepon dua-kawat , dua konduktor yang tidak berdekatan diakhiri bersama di kedua ujung kabel, dan dua konduktor lainnya juga diakhiri bersama. Gangguan yang diambil oleh kabel datang sebagai sinyal mode umum yang hampir sempurna, yang mudah dilepas oleh transformator kopling atau penguat diferensial . Manfaat gabungan dari memutar, sinyal diferensial, dan pola quadrupole memberikan kekebalan kebisingan yang luar biasa, terutama menguntungkan untuk aplikasi tingkat sinyal rendah seperti kabel mikrofon panjang, bahkan ketika dipasang sangat dekat dengan kabel daya. Ini sangat menguntungkan dibandingkan dengan pasangan yang terpilin ketika sumber medan magnet AC berada dalam jarak yang dekat, misalnya kabel panggung yang dapat menempel pada transformator daya sebaris.
 
===== Kekurangan =====
Kerugiannya adalah bahwa bintang quad, dalam menggabungkan dua konduktor, biasanya memiliki kapasitansi lebih dari kabel audio twisted dan terlindung dua konduktor serupa. Kapasitansi yang tinggi menyebabkan hilangnya frekuensi tinggi yang semakin meningkat dengan meningkatnya jarak. Kehilangan frekuensi tinggi disebabkan oleh filter RC yang dibentuk oleh impedansi output driver kabel dan kapasitansi kabel. Dalam beberapa kasus, peningkatan distorsi dapat terjadi pada driver kabel jika mengalami kesulitan menggerakkan kapasitansi kabel yang lebih tinggi.
 
Kapasitansi kabel 4-konduktor quad-star kira-kira sama dengan kapasitansi kabel 2-konduktor standar sekitar 1,5 kali lebih lama. Peningkatan kapasitansi kabel quad star biasanya tidak menjadi masalah dengan kabel pendek, tetapi bisa menjadi masalah untuk kabel panjang. Misalnya, kabel bintang-quad 8 m (25 kaki) memiliki kapasitansi 150 pF / m untuk total kapasitansi 1200 pF untuk seluruh panjang kabel. Dengan impedansi sumber 150-ohm dan kapasitansi beban 1200 pF, respons frekuensi dari rangkaian RC ini adalah -0,02 dB pada 20 kHz. Jika kabelnya 80 m, bukan 8 m, maka respons frekuensinya adalah -0,2 dB pada 20 kHz, dan -3 dB pada 88 kHz.
 
==== Twin-lead ====
{{Main|Twin-lead}}
[[Berkas:Twinlead.gif|kiri|jmpl|300 ohm twin-lead]]
Twin-lead terdiri dari sepasang konduktor yang dipisahkan oleh isolator kontinu. Dengan memegang konduktor dengan jarak yang diketahui, geometri ditetapkan dan karakteristik garis konsisten konsisten. Ini kerugian yang lebih rendah daripada kabel koaksial karena impedansi karakteristik twin-lead umumnya lebih tinggi dari kabel koaksial, yang mengarah ke kerugian resistif yang lebih rendah karena berkurangnya arus. Namun, itu lebih rentan terhadap gangguan.
Kabel '''twin-lead''' adalah kabel datar dua konduktor yang digunakan sebagai saluran transmisi seimbang untuk membawa sinyal frekuensi radio (RF). Itu dibangun dari dua kawat tembaga atau kawat baja berlapis tembaga, diadakan jarak yang tepat terpisah oleh pita plastik (biasanya polietilen ). Jarak seragam kabel adalah kunci untuk fungsi kabel sebagai saluran transmisi; setiap perubahan mendadak dalam jarak akan mencerminkan beberapa sinyal kembali ke sumber. Plastik juga menutupi dan melindungi kabel.
 
Lead kembar dapat memiliki kehilangan sinyal secara signifikan lebih rendah daripada kabel koaksial fleksibel miniatur pada gelombang pendek dan frekuensi radio VHF; misalnya, kabel koaksial tipe RG-58 kehilangan 6,6 dB per 100 m pada 30 MHz, sedangkan 300 ohm twin-lead hanya kehilangan 0,55 dB. Namun, twin-lead lebih rentan terhadap gangguan. Kedekatan dengan benda-benda logam akan menyuntikkan sinyal ke twin-lead yang akan diblokir oleh kabel koaksial. Karenanya, timbal kembar memerlukan pemasangan yang hati-hati di sekitar talang hujan , dan kebuntuan dari tiang penyangga logam. Twin-lead juga rentan terhadap degradasi yang signifikan ketika basah atau tertutup es, sedangkan coax kurang atau tidak terpengaruh dalam kondisi ini. Untuk alasan ini, coax sebagian besar telah menggantikan twin-lead di sebagian besar penggunaan, kecuali di mana sinyal maksimum diperlukan
==== Garis Lecher ====
{{Main|Garis Lecher }}
Garis Lecher adalah bentuk konduktor paralel yang dapat digunakan di UHF untuk membuat sirkuit resonan. Mereka adalah format praktis yang nyaman yang mengisi kesenjangan antara komponen yang disatukan (digunakan di HF / VHF ) dan rongga resonan (digunakan di UHF / SHF ).
 
===== kawatKarakteristik tunggaldan penggunaan =====
Kabel twin lead dan jenis lain dari saluran transmisi paralel-konduktor terutama digunakan untuk menghubungkan pemancar dan penerima radio ke antena mereka. Saluran transmisi paralel memiliki keuntungan bahwa kerugiannya adalah urutan besarnya lebih kecil dari kabel koaksial , bentuk alternatif utama saluran transmisi. Kerugiannya adalah lebih rentan terhadap gangguan , dan harus dijauhkan dari benda logam yang dapat menyebabkan kehilangan daya. Untuk alasan ini, ketika dipasang di sepanjang bagian luar gedung dan pada tiang antena, isolator penyangga harus digunakan. Ini juga merupakan praktik umum untuk memutar ujung kembar pada panjang berdiri bebas panjang untuk lebih jauh menolak ketidakseimbangan yang disebabkan oleh garis.
Saluran yang tidak seimbang sebelumnya banyak digunakan untuk transmisi telegraf, tetapi bentuk komunikasi ini sekarang sudah tidak digunakan lagi. Kabel mirip dengan twisted pair karena banyak core yang dibundel ke dalam kabel yang sama tetapi hanya satu konduktor yang disediakan per sirkuit dan tidak ada putaran. Semua sirkuit pada rute yang sama menggunakan jalur umum untuk arus balik (bumi kembali). Ada versi transmisi daya dari pengembalian kawat tunggal yang digunakan di banyak lokasi.
 
Twin-lead disediakan dalam beberapa ukuran yang berbeda, dengan nilai impedansi karakteristik 600, 450, 300, dan 75 ohm . Yang paling umum, 300 ohm twin-lead, pernah digunakan secara luas untuk menghubungkan perangkat televisi dan radio FM ke antena penerima mereka. 300 ohm twin-lead untuk instalasi televisi sebagian besar telah diganti dengan kabel feed coaxial kabel 75 ohm. Twin-lead juga digunakan di stasiun radio amatir sebagai saluran transmisi untuk transmisi seimbang sinyal frekuensi radio .
<br />
 
Impedansi karakteristik twin-lead adalah fungsi dari diameter kawat dan jaraknya; dalam 300 ohm twin-lead, jenis yang paling umum, kawat biasanya berukuran 20 atau 22, sekitar 7,5 mm (0,30 inci) terpisah. Ini sangat cocok dengan impedansi alami antena dipol yang terlipat , yang normalnya sekitar 275 ohm. Twin-lead umumnya memiliki impedansi yang lebih tinggi daripada kabel transmisi umum lainnya, kabel coaxial (membujuk). Coax RG-6 yang banyak digunakan memiliki impedansi karakteristik 75 ohm, yang mengharuskan penggunaan balun untuk mencocokkan impedansi ketika digunakan dengan jenis antena umum
 
==== Saluran Lecher ====
{{Main|Saluran Lecher }}
saluran Lecher adalah bentuk konduktor paralel yang dapat digunakan di UHF untuk membuat sirkuit resonan. Mereka adalah format praktis yang nyaman yang mengisi kesenjangan antara komponen yang disatukan (digunakan di HF / VHF ) dan rongga resonan (digunakan di UHF / SHF ).
 
=== Kawat tunggal ===
Saluran yang tidak seimbang sebelumnya banyak digunakan untuk transmisi telegraf, tetapi bentuk komunikasi ini sekarang sudah tidak digunakan lagi. Kabel mirip dengan twisted pair karena banyak core yang dibundel ke dalam kabel yang sama tetapi hanya satu konduktor yang disediakan per sirkuit dan tidak ada putaran. Semua sirkuit pada rute yang sama menggunakan saluran umum untuk arus balik (bumi kembali). Ada versi transmisi daya dari pengembalian kawat tunggal yang digunakan di banyak lokasi.
 
== Aplikasi umum ==
 
=== Transfer sinyal ===
Saluran transmisi listrik sangat banyak digunakan untuk mengirimkan sinyal frekuensi tinggi jarak jauh atau pendek dengan kehilangan daya minimum. Salah satu contoh yang dikenal adalah ujung bawah dari TV atau radio ke penerima.
 
=== Pembangkitan pulsa ===
saluran transmisi juga digunakan sebagai generator pulsa. Dengan mengisi saluran transmisi dan kemudian melepaskannya ke beban resistif , pulsa persegi panjang sama dengan dua kali panjang listrik saluran dapat diperoleh, meskipun dengan setengah tegangan. Saluran transmisi Blumlein adalah perangkat pembentuk pulsa terkait yang mengatasi keterbatasan ini. Ini kadang-kadang digunakan sebagai sumber daya berdenyut untuk pemancar radar dan perangkat lain.
 
=== Filter rintisan ===
{{see also|Distributed element filter#Stub band-pass filters}}Jika saluran transmisi hubung-pendek atau hubung-terbuka dihubungkan secara paralel dengan saluran yang digunakan untuk mentransfer sinyal dari titik A ke titik B, maka saluran itu akan berfungsi sebagai filter. Metode untuk membuat bertopik mirip dengan metode untuk menggunakan saluran Lecher untuk pengukuran frekuensi kasar, tetapi 'bekerja mundur'. Salah satu metode yang direkomendasikan dalam buku pegangan komunikasi radio RSGB adalah dengan mengambil jalur sirkit terbuka dengan kabel yang diparalel secara paralel dengan pengumpan yang mengirimkan sinyal dari udara. Dengan memotong ujung bebas dari saluran transmisi, minimum dalam kekuatan sinyal yang diamati pada penerima dapat ditemukan. Pada tahap ini filter rintisan akan menolak frekuensi ini dan harmonik yang aneh, tetapi jika ujung bebas dari rintisan disingkat maka rintisan akan menjadi filter yang menolak harmonik genap
== Lihat juga ==
'''Saluran transmisi artifisial'''
 
Dalam telekomunikasi, saluran transmisi artifisial adalah jaringan listrik dua port yang memiliki impedansi karakteristik, waktu tunda transmisi, pergeseran fasa, atau parameter lain dari saluran transmisi nyata. Ini dapat digunakan untuk mensimulasikan saluran transmisi nyata dalam satu atau beberapa hal ini. saluran buatan awal digunakan dalam penelitian telepon dan mengambil bentuk "cascade equalizer" fase kisi untuk memberikan penundaan yang diperlukan. Sirkuit fase kisi diciptakan oleh Otto Zobel pada 1920-an.
 
'''Kecepatan fase'''
 
Kecepatan fase dari gelombang adalah tingkat di mana fase gelombang merambat di ruang angkasa. Ini adalah kecepatan di mana komponen frekuensi gelombang bergerak. Untuk komponen seperti itu, setiap fase gelombang tertentu (misalnya, puncak) akan tampak bergerak dengan kecepatan fase. Kecepatan panjang gelombang diberikan dalam bentuk λ (lambda) dan periode waktu T sebagai
 
v p = λ T.
 
Secara ekuivalen, dalam hal frekuensi sudut gelombang yang menentukan perubahan sudut per unit waktu, dan bilangan gelombang (atau bilangan gelombang sudut) k, yang mewakili proporsionalitas antara frekuensi sudut ω dan kecepatan linier (kecepatan rambat) νp,
 
v p = ω k
 
Untuk memahami dari mana persamaan ini berasal, pertimbangkan gelombang sinus dasar, A cos (kx - ωt). Setelah waktu t, sumber telah menghasilkan ωt / 2π = ft osilasi. Setelah waktu yang sama, gelombang awal telah disebarkan jauh dari sumber melalui ruang ke jarak x ke jumlah osilasi yang sama, kx = ωt.
 
Dengan demikian kecepatan rambat v adalah v = x / t = ω / k. Gelombang merambat lebih cepat ketika osilasi frekuensi yang lebih tinggi didistribusikan kurang padat di ruang angkasa. Secara formal, Φ = kx - ωt adalah fase. Karena ω = ΦdΦ / dt dan k = + dΦ / dx, kecepatan gelombang adalah v = dx / dt = ω / k.
 
'''Gelombang longitudinal'''
 
Gelombang longitudinal adalah gelombang di mana perpindahan media berada dalam arah yang sama dengan, atau arah yang berlawanan dengan, arah propagasi gelombang. Gelombang longitudinal mekanis juga disebut gelombang kompresional atau kompresi, karena menghasilkan kompresi dan penghalusan ketika melalui medium, dan gelombang tekanan, karena menghasilkan kenaikan dan penurunan tekanan.
 
Jenis utama gelombang lainnya adalah gelombang transversal, di mana perpindahan medium berada pada sudut yang tepat terhadap arah rambat. Beberapa gelombang transversal bersifat mekanis, artinya gelombang membutuhkan media elastis untuk dilalui. Gelombang mekanik transversal juga disebut "gelombang geser".
 
Dengan akronim, "gelombang longitudinal" dan "gelombang transversal" kadang-kadang disingkat oleh beberapa penulis sebagai "gelombang-L" dan "gelombang-T" masing-masing untuk kenyamanan mereka sendiri. Sementara dua akronim ini memiliki makna khusus dalam seismologi (gelombang-L untuk gelombang Cinta atau gelombang panjang ) dan elektrokardiografi (lihat gelombang T), beberapa penulis memilih untuk menggunakan "gelombang-l" (huruf kecil 'L') dan "t-gelombang" sebagai gantinya, meskipun mereka tidak umum ditemukan dalam tulisan-tulisan fisika kecuali untuk beberapa buku sains populer.
 
Gelombang longitudinal termasuk gelombang suara (getaran dalam tekanan, partikel perpindahan, dan kecepatan partikel yang diperbanyak dalam media elastis) dan gelombang-P seismik (diciptakan oleh gempa bumi dan ledakan). Dalam gelombang longitudinal, perpindahan media sejajar dengan rambatan gelombang, dan gelombang bisa lurus atau bulat. Contohnya, Gelombang di sepanjang mainan Slinky yang diregangkan, di mana jarak antara kumparan meningkat dan menurun, adalah visualisasi yang baik
 
'''Transmisi daya frekuensi radio'''
 
Transmisi daya frekuensi radio adalah transmisi daya output pemancar ke antena. Ketika antena tidak terletak dekat dengan pemancar, saluran transmisi khusus diperlukan.
 
Jenis saluran transmisi yang paling umum untuk keperluan ini adalah kabel koaksial berdiameter besar. Pada pemancar daya tinggi, Saluran Tertutup digunakan. Saluran tertutup adalah sejenis saluran udara yang serupa dalam konstruksi dengan kabel koaksial. Bagian dalam Konduktor diselimuti oleh isolator yang dipasang pada perangkat melingkar di tengah. Pada perangkat melingkar, ada kabel untuk kutub lain dari saluran.
 
''Saluran Tertutup'' digunakan pada pemancar berdaya tinggi di Eropa, seperti pemancar gelombang panjang Topolna, pemancar gelombang panjang Solec Kujawski dan beberapa pemancar berdaya tinggi lainnya untuk gelombang panjang, menengah dan pendek.
 
Untuk UHF dan VHF, saluran Goubau terkadang digunakan dan terdiri dari kawat tunggal terisolasi yang dipasang pada isolator. Di Saluran Goubau, gelombang bergerak sebagai arus longitudinal yang dikelilingi oleh medan EM transversal. Untuk gelombang mikro, pandu gelombang digunakan.
 
'''Time-domain reflectometer (TDR)'''
 
''Time-domain reflectometer (TDR)'' adalah instrumen elektronik yang menggunakan time-domain reflectometry untuk mengkarakterisasi dan menemukan kesalahan pada kabel logam (misalnya, kawat pasangan bengkok atau kabel coaxial). Itu juga dapat digunakan untuk menemukan konektor dalam yang tidak tersambung,dan papan sirkuit cetak, atau saluran listrik lainnya. Perangkat yang setara untuk serat optik adalah reflectometer domain waktu optik.
 
TDR mengukur refleksi di sepanjang konduktor. Untuk mengukur pantulan tersebut, TDR akan mengirimkan sinyal insiden ke konduktor dan mendengarkan pantulannya. Jika konduktor memiliki impedansi yang seragam dan diakhiri dengan semestinya, maka tidak akan ada pantulan dan sinyal insiden yang tersisa akan diserap pada ujung jauh oleh terminasi. Sebaliknya, jika ada variasi impedansi, maka beberapa sinyal insiden akan dipantulkan kembali ke sumbernya. TDR pada prinsipnya mirip dengan radar.
 
'''''Refleksi'''''
 
Secara umum, pantulan akan memiliki bentuk yang sama dengan sinyal datang, tetapi tanda dan besarnya tergantung pada perubahan tingkat impedansi. Jika ada peningkatan langkah impedansi, maka pantulan akan memiliki tanda yang sama dengan sinyal insiden; jika ada langkah penurunan impedansi, refleksi akan memiliki tanda sebaliknya. Besarnya refleksi tidak hanya tergantung pada jumlah perubahan impedansi, tetapi juga pada kehilangan konduktor.
 
Refleksi diukur pada output / input ke TDR dan ditampilkan atau diplot sebagai fungsi waktu. Atau, tampilan dapat dibaca sebagai fungsi panjang kabel karena kecepatan perambatan sinyal hampir konstan untuk media transmisi yang diberikan.
 
Karena sensitivitasnya terhadap variasi impedansi, TDR dapat digunakan untuk memverifikasi karakteristik impedansi kabel, lokasi sambungan dan sambungan serta kerugian terkait, dan memperkirakan panjang kabel.
 
'''''Sinyal insiden'''''
 
TDR menggunakan sinyal insiden yang berbeda. Beberapa TDR mentransmisikan pulsa di sepanjang konduktor; resolusi instrumen semacam itu sering kali lebar pulsa. Pulsa sempit dapat menawarkan resolusi yang baik, tetapi mereka memiliki komponen sinyal frekuensi tinggi yang dilemahkan pada kabel panjang. Bentuk denyut nadi sering setengah sinusoid. Untuk kabel yang lebih panjang, lebar pulsa yang lebih luas digunakan.
 
Langkah waktu naik cepat juga digunakan. Alih-alih mencari pantulan dari denyut nadi yang lengkap, instrumen lebih mementingkan sisi naik, yang bisa sangat cepat. Sebuah teknologi tahun 1970-an TDR menggunakan langkah-langkah dengan kenaikan waktu 25 ps.
 
TDR lain mentransmisikan sinyal kompleks dan mendeteksi pantulan dengan teknik korelasi. Lihat reflectometry domain waktu spread-spektrum.
 
== Referensi ==
''Part of this article was derived from [[Federal Standard 1037C]].''
{{Reflist|30em}}
 
* {{Citation
|last= Steinmetz
|first= Charles Proteus
|authorlink= Charles Proteus Steinmetz
|title= The Natural Period of a Transmission Line and the Frequency of lightning Discharge Therefrom
|journal=The Electrical World
|date= August 27, 1898
|pages= 203–205}}
* {{Citation
|title= Electromagnetism
|edition= 2nd
|last=Grant
|first= I. S.
|last2= Phillips
|first2= W. R.
|publisher= John Wiley
|isbn= 978-0-471-92712-9|date= 1991-08-26
}}
* {{Citation
|title=Fundamentals of Applied Electromagnetics
|edition= 2004 media
|last= Ulaby
|first= F. T.
|publisher= Prentice Hall
|isbn= 978-0-13-185089-7|year= 2004
}}
* {{Citation
|title=Radio communication handbook
|year= 1982
|page= 20
|chapter= Chapter 17
|publisher= [[Radio Society of Great Britain]]
|isbn= 978-0-900612-58-9 }}
* {{Citation
|last= Naredo
|first= J. L.
|first2= A. C.
|last2= Soudack
|first3= J. R.
|last3= Marti
|title= Simulation of transients on transmission lines with corona via the method of characteristics
|journal= IEE Proceedings. Generation, Transmission and Distribution.
|volume= 142
|issue= 1
|publisher= Institution of Electrical Engineers
|location= Morelos <!-- dubious -->
|date= Jan 1995
|issn= 1350-2360}}
 
== Bacaan Lebih Lanjut ==
{{Commons category|Transmission lines}}
* [https://babel.hathitrust.org/cgi/pt?id=coo.31924066336946;view=1up;seq=115 Annual Dinner of the Institute at the Waldorf-Astoria]. [[Transactions of the American Institute of Electrical Engineers]], New York, January 13, 1902. (Honoring of [[Guglielmo Marconi]], January 13, 1902)
* Avant! software, [https://web.archive.org/web/20050925041320/http://www.ece.cmu.edu/~ee762/hspice-docs/html/hspice_and_qrg/hspice_2001_2-124.html Using Transmission Line Equations and Parameters]. Star-Hspice Manual, June 2001.
* Cornille, P, [http://www.iop.org/EJ/abstract/0022-3727/23/2/001 On the propagation of inhomogeneous waves]. J. Phys. D: Appl. Phys. 23, February 14, 1990. (Concept of inhomogeneous waves propagation&nbsp;— Show the importance of the telegrapher's equation with Heaviside's condition.)
* Farlow, S.J., ''Partial differential equations for scientists and engineers''. J. Wiley and Sons, 1982, p.&nbsp;126. {{ISBN|0-471-08639-8}}.
* Kupershmidt, Boris A., [https://arxiv.org/abs/math-ph/9810020 Remarks on random evolutions in Hamiltonian representation]. Math-ph/9810020. J. Nonlinear Math. Phys. 5 (1998), no. 4, 383–395.
* [http://cktse.eie.polyu.edu.hk/eie403/ Transmission line matching]. EIE403: High Frequency Circuit Design. Department of Electronic and Information Engineering, Hong Kong Polytechnic University. ([[Portable Document Format|PDF]] format)
* Wilson, B. (2005, October 19). ''[https://web.archive.org/web/20060109065828/http://cnx.rice.edu/content/m1044/latest/ Telegrapher's Equations]''. Connexions.
* John Greaton Wöhlbier, "''[https://web.archive.org/web/20060619072607/http://www.wildwestwohlbiers.org/john/files/ms_thesis.pdf "Fundamental Equation''" and "''Transforming the Telegrapher's Equations"]''. Modeling and Analysis of a Traveling Wave Under Multitone Excitation.
* Keysight Technologies. Educational Resources. ''Wave Propagation along a Transmission Line''. May need to add "http://www.keysight.com" to your Java Exception Site list. [http://www.keysight.com/find/nw_xline Educational Java Applet]{{Pranala mati|date=Maret 2023 |bot=InternetArchiveBot |fix-attempted=yes }}.
* Qian, C., [https://www.sciencedirect.com/science/article/pii/S1090780709001025 Impedance matching with adjustable segmented transmission line]. J. Mag. Reson. 199 (2009), 104–110.
 
== Tautan External ==
* [http://terahertz.tudelft.nl/Research/project.php?id=74&ti=27 Transmission Line Calculator (Including radiation and surface-wave excitation losses)]
* [http://www.cvel.clemson.edu/emc/calculators/TL_Calculator/index.html Transmission Line Parameter Calculator] {{Webarchive|url=https://web.archive.org/web/20120317184705/http://www.cvel.clemson.edu/emc/calculators/TL_Calculator/index.html |date=2012-03-17 }}
* [http://www.amanogawa.com/archive/transmissionB.html Interactive applets on transmission lines]
* [http://www.eetimes.com/design/microwave-rf-design/4200760/SPICE-Simulation-of-Transmission-Lines-by-the-Telegrapher-s-Method-Part-1-of-3-?Ecosystem=microwave-rf-design SPICE Simulation of Transmission Lines] {{Webarchive|url=https://web.archive.org/web/20120929204812/http://www.eetimes.com/design/microwave-rf-design/4200760/SPICE-Simulation-of-Transmission-Lines-by-the-Telegrapher-s-Method-Part-1-of-3-?Ecosystem=microwave-rf-design |date=2012-09-29 }}
* [https://en.wiki-indonesia.club/wiki/Transmission_line Transmission Line]
* [https://ryanhafid.co.vu R] {{Webarchive|url=https://web.archive.org/web/20200721153403/http://www.ryanhafid.co.vu/ |date=2020-07-21 }}
 
 
* [[Saluran Transmisi Telekomunikasi]]
{{Telekomunikasi-stub}}<br />
 
[[Kategori:Telekomunikasi]]
[[Kategori:Saluran Transmisi]]
[[Kategori:Transmisi]]