Bilangan prima Wolstenholme: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) koma, titik, pindahkan ke pencarian dan status |
Fitur saranan suntingan: 2 pranala ditambahkan. |
||
(Satu revisi perantara oleh satu pengguna lainnya tidak ditampilkan) | |||
Baris 11:
| OEIS_name = Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4)
}}
Dalam [[teori bilangan]], '''bilangan prima Wolstenholme''' ({{Lang-en|Wolstenholme prime}}) merupakan jenis [[bilangan prima]] spesial yang memenuhi [[teorema Wolstenholme]] yang lebih kuat. Teorema Wolstenholme melibatkan [[relasi kekongruenan]] yang dipenuhi oleh semua bilangan prima yang lebih besar daripada 3. Bilangan prima Wolstenholme dinamai dari seorang matematikawan yang bernama [[Joseph Wolstenholme]], yang pertama kali menjelaskan teorema ini pada abad ke-19.
Bilangan prima ini menjadi banyak perhatian karena memiliki kaitannya dengan [[Teorema Terakhir Fermat]]. Selain itu, bilangan prima Wolstenholme juga berkaitan dengan jenis kelas bilangan spesial lainnya, yang dikaji dengan harapan dapat memperumum suatu bukti kebenaran teorema untuk semua [[Bilangan asli|bilangan bulat positif]] yang lebih besar daripada dua.
Dua bilangan prima Wolstenholme yang diketahui hanyalah 16843 dan 2124679 {{OEIS|A088164}}. Tiada bilangan prima Wolstenholme yang lebih kecil daripada 10<sup>9</sup>.<ref>{{MathWorld|urlname=WolstenholmePrime|title=Wolstenholme prime|mode=cs2}}</ref>
Baris 39:
== Referensi ==
{{refbegin|30em}}
* {{Citation | last1=Buhler | first1=J. | last2=Crandall | first2=R. | last3=Ernvall | first3=R. | last4=Metsänkylä | first4=T. | title=Irregular Primes and Cyclotomic Invariants to Four Million | year=1993 | journal=[[Mathematics of Computation]] | volume=61 | issue=203 | pages=151–153 | url=http://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1197511-5/S0025-5718-1993-1197511-5.pdf | doi=10.2307/2152942 | jstor=2152942 | bibcode=1993MaCom..61..151B | doi-access=free }}
* {{Citation | last1=Clarke | first1=F. | last2=Jones | first2=C. | title=A Congruence for Factorials | year=2004 | journal=Bulletin of the London Mathematical Society | volume=36 | pages=553–558 | url=http://blms.oxfordjournals.org/content/36/4/553.full.pdf | doi=10.1112/S0024609304003194 | issue=4
* {{Citation | last1=Johnson | first1=W. | title=Irregular Primes and Cyclotomic Invariants | year=1975 | journal=[[Mathematics of Computation]] | volume=29 | issue=129 | pages=113–120 | url=http://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0376606-9/S0025-5718-1975-0376606-9.pdf | doi=10.2307/2005468 | jstor=2005468 | doi-access=free
* {{Citation | last1=McIntosh | first1=R. J. | title=On the converse of Wolstenholme's Theorem | year=1995 | journal=[[Acta Arithmetica]] | volume=71 | issue=4 | pages=381–389 | url=http://matwbn.icm.edu.pl/ksiazki/aa/aa71/aa7144.pdf | doi=10.4064/aa-71-4-381-389 | doi-access=free
* {{Citation | last1=McIntosh | first1=R. J. | last2=Roettger | first2=E. L. | title=A search for Fibonacci-Wieferich and Wolstenholme primes | year=2007 | journal=Mathematics of Computation | volume=76 | issue=260 | pages=2087–2094 | doi=10.1090/S0025-5718-07-01955-2 | url=http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01955-2/S0025-5718-07-01955-2.pdf | bibcode=2007MaCom..76.2087M | doi-access=free
* {{Citation | author1-link=Paulo Ribenboim | last1=Ribenboim | first1=P. | title=The Little Book of Bigger Primes | location=New York | publisher=Springer-Verlag New York, Inc. | year=2004 | isbn=978-0-387-20169-6 | chapter=Chapter 2. How to Recognize Whether a Natural Number is a Prime
* {{Citation | last1=Selfridge | first1=J. L. | last2=Pollack | first2=B. W. | title=Fermat's last theorem is true for any exponent up to 25,000 | year=1964 | journal=Notices of the American Mathematical Society | volume=11 | pages=97}}
* {{Citation | last1=Trevisan | first1=V. | last2=Weber | first2=K. E. | title=Testing the Converse of Wolstenholme's Theorem | year=2001 | journal=Matemática Contemporânea | volume=21 | pages=275–286 | url=http://www.lume.ufrgs.br/bitstream/handle/10183/448/000317407.pdf?sequence=1
* {{Citation | last1=Zhao | first1=J. | title=Bernoulli numbers, Wolstenholme's theorem, and p<sup>5</sup> variations of Lucas' theorem | year=2007 | journal=Journal of Number Theory | volume=123 | pages=18–26 | doi=10.1016/j.jnt.2006.05.005 | s2cid=937685 | url=http://home.eckerd.edu/~zhaoj/research/ZhaoJNTBern.pdf | doi-access=free
* {{Citation | last1=Zhao | first1=J. | title=Wolstenholme Type Theorem for Multiple Harmonic Sums | year=2008 | journal=International Journal of Number Theory | volume=4 | issue=1 | pages=73–106 | url=http://home.eckerd.edu/~zhaoj/research/ZhaoIJNT.pdf | doi=10.1142/s1793042108001146
{{refend}}
|