Penambahan: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Membalikkan revisi 18995341 oleh 114.10.6.118 (bicara) Tag: Pembatalan Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
Add 2 books for Wikipedia:Pemastian (20231209)) #IABot (v2.0.9.5) (GreenC bot |
||
(26 revisi perantara oleh 8 pengguna tidak ditampilkan) | |||
Baris 1:
{{redirect|Penjumlahan}}
{{Operasi aritmetika}}{{Terjemahan kaku|en|Addition}}[[Berkas:Addition01.svg|ka|jmpl|120px|3 + 2 = 5 dengan [[apel]] pilihan paling populer dalam buku cetak<ref>From Enderton (p.138): "...select two sets ''K'' and ''L'' with card ''K'' = 2 and card ''L'' = 3. Sets of fingers are handy; sets of apples are preferred by textbooks."</ref>]]
'''Penambahan
Selain untuk menghitung jumlah benda, penambahan bisa didefinisikan dan digunakan untuk menghitung objek abstrak berupa [[bilangan]], di antaranya [[bilangan bulat]], [[bilangan real]], dan [[bilangan kompleks]]. Dalam cabang matematika lain yang disebut [[aljabar]], penambahan bisa digunakan untuk objek-objek abstrak lainnya seperti [[vektor (spasial)|vektor]] dan [[matriks (matematika)|matriks]].
Penambahan memiliki beberapa sifat penting. Penambahan bersifat [[sifat komutatif|komutatif]], yang berarti urutan bilangan yang ditambahkan tidak berpengaruh, dan bersifat [[sifat asosiatif|asosiatif]], yang berarti jika terdapat beberapa operasi penambahan maka urutan penambahan yang dikerjakan terlebih dahulu tidak berpengaruh. Menambahkan [[0 (bilangan)|0]] tidak mengubah bilangan yang ditambah. Penambahan juga memiliki aturan-aturan yang terkait dengan operasi [[pengurangan]] dan [[perkalian]].
Baris 16 ⟶ 17:
[[Berkas:AdditionVertical.svg|right|thumb|Penjumlahan kolom bilangan pada kolom akan ditambahkan, dengan penjumlahan ditulis di bawah [[garis bawah]] bilangan.]]
Ada pula situasi
* Bilangan bulat dengan [[pecahan (matematika)|pecahan]] menunjukkan jumlah keduanya, yang disebut ''bilangan campuran''.<ref>Devine et al. p. 263</ref> Sebagai contoh, <br />{{spaces|6}}<math>3
Jumlah dari sebuah [[deret (matematika)|deret]] dari bilangan terkait dapat diekspresikan melalui [[notasi
:<math>\sum_{k=1}^5 k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.</math>
{{anchor|sumand|adend}}
Bilangan atau objek yang akan ditambahkan dalam penjumlahan umum secara kolektif disebut sebagai '''
terminologi ini dibawa ke penjumlahan beberapa istilah.
Dibedakan dari ''faktor'', yaitu [[perkalian]].
Baris 30 ⟶ 31:
[[Berkas:AdditionNombryng.svg|left|thumb|Ilustrasi yang digambar ulang oleh ''The Art of Nombryng'', salah satu teks aritmetika dalam bahasa Inggris pertama, pada abad ke-15.<ref>Karpinski pp. 56–57, reproduced on p. 104</ref>]]
[[Tanda plus dan minus|Tanda plus]] "+" ([[Unicode]]:U+002B; [[ASCII]]: <code>&#43;</code>) adalah singkatan dari kata Latin ''et'', yang berarti "dan".<ref>{{cite book |last=Cajori |first=Florian |title=A History of Mathematical Notations, Vol. 1 |url=https://archive.org/details/in.ernet.dli.2015.200372 |year=1928 |publisher=The Open Court Company, Publishers |chapter=Asal dan arti dari tanda + dan -}}</ref> Muncul dalam karya matematika yang berasal dari setidaknya 1489.<ref name="OED">{{OED|plus}}</ref>
== Interpretasi ==
Baris 40 ⟶ 41:
* Ketika dua atau lebih koleksi terputus digabungkan menjadi satu koleksi, jumlah objek dalam satu koleksi adalah jumlah dari jumlah objek dalam koleksi asli.
Interpretasi ini mudah untuk divisualisasikan, dengan sedikit bahaya ambiguitas. Dalam matematika tingkat tinggi (untuk definisi ketat yang diilhaminya, lihat {{Section link||Bilangan asli}}
Salah satu perbaikan yang mungkin dilakukan adalah dengan mempertimbangkan koleksi objek dengan mudah dibagi, seperti pai atau lebih baik lagi, batang tersegmentasi.<ref>''Menambahkannya'' (p. 73) membandingkan menambahkan batang pengukur dengan menambahkan himpunan kucing: "Misalnya, inci dapat dibagi lagi menjadi beberapa bagian, yang sulit dibedakan dari keseluruhan, kecuali bahwa inci lebih pendek; sedangkan bagi kucing untuk membaginya menjadi beberapa bagian, dan itu sangat mengubah sifat mereka."</ref> Menggabungkan himpunan segmen, batang dapat digabungkan dari ujung ke ujung, yang menggambarkan konsep tambahan lainnya: menambahkan bukan batang tetapi panjang batang.
Baris 64 ⟶ 65:
Akan tetapi, jika penambahan berada di dalam pernyataan yang melibatkan operasi lain, urutan operasi akan berpengaruh. Misalnya, jika suatu pernyataan berisi operasi penambahan dan perkalian, maka operasi perkalian harus dilakukan terlebih dahulu.
=== Sifat distributif ===
:Berlaku dengan perkalian atas penambahan. Identitas ini sangat penting dalam menyederhanakan ekspresi aljabar:
::<math>x\cdot(y + z) = x\cdot y + x\cdot z </math>
=== Elemen identitas ===
[[File:AdditionZero.svg|right|70px|thumb|5 + 0 = 5 digambarkan dengan sekarung titik]]
Ketika menambahkan [[0 (bilangan)|nol]] dengan suatu bilangan apapun, hasilnya akan sama dengan bilangan tersebut; nol adalah [[elemen identitas]] dari penambahan. Dalam simbol matematika, untuk ''
:''
Hukum ini pertama dikenali dalam ''[[Brahmasphutasiddhanta]]'' dari [[Brahmagupta]] pada tahun 628,
=== Elemen invers ===
:Setiap bilangan ''x'', penjumlahan, memiliki '''[[invers penambahan]]''', <math>-x</math>, sehingga <math>x+(-x) = 0</math>.
===Penerus ===
Baris 79 ⟶ 87:
== Cara penambahan ==
=== Kemampuan bawaan ===
Studi perkembangan matematika yang dimulai sekitar tahun 1980-an telah mengeksploitasi fenomena [[pembiasaan]]: [[
Bahkan beberapa hewan bukan manusia menunjukkan kemampuan terbatas untuk menambah, terutama [[primata]]. Dalam percobaan tahun 1995 meniru hasil Wynn tahun 1992 (tetapi menggunakan [[terong]] sebagai pengganti boneka), [[monyet rhesus]] dan [[
=== Pembelajaran masa kecil ===
Biasanya, anak pertama menguasai [[menghitung]]. Ketika diberikan masalah yang mengharuskan dua item dan tiga item digabungkan, anak kecil mencontohkan situasi dengan objek fisik, jari atau gambar dan kemudian hitung totalnya. Saat mereka memperoleh pengalaman, mereka mempelajari atau menemukan strategi "mengandalkan": diminta untuk menemukan dua tambah tiga, anak-anak menghitung tiga lewat dua, mengatakan "tiga, empat, ''lima''" (biasanya berdetak dengan jari), dan tiba pukul lima. Strategi ini tampaknya hampir universal; anak-anak dengan mudah memahaminya dari teman atau guru.<ref>F. Smith p. 130</ref> Sebagian besar menemukannya secara mandiri. Dengan pengalaman tambahan, anak-anak belajar menambah lebih cepat dengan memanfaatkan komutatifitas penjumlahan dengan menghitung dari bilangan yang lebih besar, dalam hal ini, dimulai dengan tiga dan menghitung "empat, ''lima''." Akhirnya anak-anak mulai mengingat fakta penjumlahan tertentu ("[[bilangan ikatan]]"), baik melalui pengalaman atau hafalan. Begitu beberapa fakta dimasukkan ke dalam ingatan, anak-anak mulai memperoleh fakta yang tidak diketahui dari yang diketahui. Misalnya, seorang anak yang diminta untuk menjumlahkan enam dan tujuh mungkin tahu itu {{nowrap|1=6 + 6 = 12}} dan kemudian beralasan bahwa {{nowrap|6 + 7}} adalah 13.<ref>{{Cite book |last=Carpenter |first=Thomas |author2=Fennema, Elizabeth |author3=Franke, Megan Loef |author4=Levi, Linda |author5=Empson, Susan |title=Children's mathematics: Cognitively guided instruction |publisher=Heinemann |year=1999 |location=Portsmouth, NH |isbn=978-0-325-00137-1 |url-access=registration |url=https://archive.org/details/childrensmathema0000unse_i5h7 }}</ref> Fakta yang diturunkan dapat ditemukan dengan sangat cepat dan sebagian besar siswa sekolah dasar pada akhirnya mengandalkan campuran dari fakta yang dihafal dan diturunkan untuk menambahkan dengan lancar.<ref name=Henry>{{Cite journal |last=Henry |first=Valerie J. |author2=Brown, Richard S. |title=First-grade basic facts: An investigation into teaching and learning of an accelerated, high-demand memorization standard |url=https://archive.org/details/sim_journal-for-research-in-mathematics-education_2008-03_39_2/page/153 |journal=Journal for Research in Mathematics Education |volume=39 |issue=2 |pages=153–183 |year=2008 |doi=10.2307/30034895|jstor=30034895 }}</ref>
Negara yang berbeda memperkenalkan bilangan bulat dan aritmetika pada usia yang berbeda, dengan banyak negara mengajar tambahan di prasekolah.<ref>
Baris 161 ⟶ 169:
4 9 . 4 4
==== Notasi
{{main|Notasi ilmiah#Operasi dasar}}
Pada [[notasi ilmiah]], bilangan ditulis dalam bentuk <math>x=a\times10^{b}</math>, dimana <math> a </math> adalah signifikan dan <math>10^{b}</math> adalah bagian eksponensial. Penambahan membutuhkan dua angka dalam notasi ilmiah untuk direpresentasikan menggunakan bagian eksponensial yang sama, sehingga dua signifikansi dapat dengan mudah ditambahkan.
Baris 191 ⟶ 199:
===Komputer===
[[Berkas:Opampsumming2.svg|right|frame|Penambahan dengan op-amp. Lihat [[Aplikasi penguat operasional#Penguat penjumlahan|Penguat penjumlahan]] untuk detailnya.]]
[[Komputer analog]] bekerja secara langsung dengan besaran fisis, sehingga mekanisme penjumlahannya bergantung pada bentuk penjumlahan. Sebuah penambah mekanis mungkin mewakili dua tambahan sebagai posisi blok geser, dalam hal ini mereka dapat ditambahkan dengan [[
Penjumlahan juga merupakan dasar pengoperasian [[komputer|komputer digital]], dimana efisiensi penjumlahan, khususnya mekanisme [[penerus (aritmetika)|penerus]], merupakan batasan penting untuk kinerja keseluruhan.
Baris 198 ⟶ 206:
[[Swipoa]], juga disebut bingkai penghitungan, adalah alat hitung yang digunakan berabad-abad sebelum penerapan sistem angka modern tertulis dan masih banyak digunakan oleh pedagang, pedagang, dan juru tulis di [[Asia]], [[Afrika]], dan di tempat lain; ia ditemukan setidaknya 2700–2300 SM, ketika digunakan di [[Sumer]].<ref>{{cite book |last=Ifrah |first=Georges |year=2001 |title=The Universal History of Computing: From the Abacus to the Quantum Computer |publisher=John Wiley & Sons, Inc. |location=New York |isbn=978-0-471-39671-0 |url=https://archive.org/details/unset0000unse_w3q2 }} hal. 11</ref>
[[Blaise Pascal]] menemukan kalkulator mekanik pada tahun 1642;<ref name="inventor">[[Penambahan#MARG|Jean Marguin]], hal. 48 (1994); Mengutip [[Penambahan#TATON63|René Taton]] (1963)</ref> ia adalah
[[Berkas:Full-adder.svg|thumb|"[[Penambah (elektronik)|Penambahan penuh]]" rangkaian logika yang menambahkan dua digit biner, ''A'' dan ''B'', bersama dengan input penerus ''C<sub>dalam</sub>'', menghasilkan jumlah bit, ''S'', dan hasil penerus, ''C<sub>keluar</sub>''.]]
[[Penambah
<syntaxhighlight lang="c">
// Algoritme iteratif
int
int
while (y != 0) {
x = XOR(x, y); //
y =
}
return x;
}
// Algoritme rekursif
int
return x if (y == 0) else
}
</syntaxhighlight>
Di komputer, jika hasil penjumlahan terlalu besar untuk disimpan, maka terjadi [[
== Penambahan bilangan ==
Baris 228 ⟶ 236:
=== Bilangan asli ===
{{further|Bilangan asli}}
Ada dua cara populer untuk mendefinisikan jumlah dari dua bilangan asli ''a'' dan ''b''. Jika bilangan asli didefinisikan sebagai [[Bilangan kardinal|kardinalitas]] dari [[himpunan hingga]], (kardinalitas suatu himpunan adalah banyak unsur dalam himpunan tersebut), maka jumlah dua bilangan asli bisa didefinisikan sebagai berikut:
* Misalkan N(''S'') adalah lambang untuk kardinalitas himpunan ''S''. Misalkan terdapat dua himpunan saling lepas ''A'' dan ''B'', dengan {{nowrap|1=N(''A'') = ''a''}} dan {{nowrap|1=N(''B'') = ''b''}}. Maka {{nowrap|''a'' + ''b''}} didefinisikan sebagai <math> N(A \cup B)</math>.<ref>Begle p. 49, Johnson p. 120, Devine et al. p. 75</ref>
Di sini, {{nowrap|1=''A'' ∪ ''B''}} adalah [[gabungan (teori himpunan)|gabungan]] dari ''A'' dan ''B''. Versi alternatif dari definisi ini memungkinkan ''A'' dan ''B'' bertindih dan kemudian mengambil [[satuan disjoin]], mekanisme yang memungkinkan unsur-unsur umum untuk dipisahkan dan karena itu dihitung dua kali.
Baris 235 ⟶ 243:
* Misalkan ''n''<sup>+</sup> adalah lambang untuk [[fungsi penerus|penerus]] dari ''n'', yaitu bilangan setelah ''n'' dalam himpunan bilangan asli, jadi 0<sup>+</sup>=1, 1<sup>+</sup>=2. Definisikan {{nowrap|1=''a'' + 0 = ''a''}}. Definisikan jumlah secara umum menggunakan rekursi {{nowrap|1=''a'' + (''b''<sup>+</sup>) = (''a'' + ''b'')<sup>+</sup>}}. Jadi misalnya {{nowrap|1=1 + 1 = 1 + 0<sup>+</sup> = (1 + 0)<sup>+</sup> =}} {{nowrap|1=1<sup>+</sup> = 2}}.<ref>Enderton hal. 79</ref>
Sekali lagi, variasi kecil pada definisi ini dalam literatur. Secara harfiah, definisi di atas adalah aplikasi dari [[Rekursi#Teorema rekursi|teorema rekursi]] pada [[himpunan terurut parsial]] '''N'''<sup>2</sup>.<ref>Untuk versi yang berlaku untuk pohimpunan apa pun dengan [[kondisi rantai turunan]], lihat Bergman hal. 100.</ref> Di sisi lain, beberapa sumber lebih sering menggunakan teorema rekursi hingga yang hanya berlaku untuk himpunan bilangan asli. Salah satu ''a'' untuk sementara "diperbaiki", menerapkan rekursi pada ''b'' untuk mendefinisikan fungsi "''a''
Perumusan penambahan rekursif ini telah dikembangkan oleh Dedekind pada tahun 1854, dan dia kemudian mengembangkannya selama dekade-dekade berikutnya.<ref>Ferreirós p. 223</ref> Dia membuktikan sifat asosiatif dan komutatifnya menggunakan [[induksi matematika]].
Baris 244 ⟶ 252:
* Untuk bilangan bulat ''n'', maka |''n''| menjadi nilai mutlaknya. Misalkan ''a'' dan ''b'' adalah bilangan bulat. Jika ''a'' atau ''b'' adalah nol, perlukan sebagai identitas. Jika ''a'' dan ''b'' keduanya positif, tentukan {{nowrap|1=''a'' + ''b'' = {{!}}''a''{{!}} + {{!}}''b''{{!}}}}. Jika ''a'' dan ''b'' keduanya negatif, tentukan {{nowrap|1=''a'' + ''b'' = −({{!}}''a''{{!}} + {{!}}''b''{{!}})}}. Jika ''a'' dan ''b'' memiliki tanda yang berbeda, tentukan {{nowrap|''a'' + ''b''}} sebagai selisih antara |''a''| dan |''b''|, dengan tanda suku yang nilai absolutnya lebih besar.<ref>K.Smith hal. 234, Sparks dan Rees hal. 66</ref> Sebagai contoh, {{nowrap|1=−6 + 4 = 2}}; karena –6 dan 4 memiliki tanda yang berbeda, nilai absolutnya dikurangi, dan karena nilai absolut suku negatif lebih besar, jawabannya adalah negatif.
Meskipun definisi ini berguna untuk masalah konkret, jumlah kasus yang perlu dipertimbangkan memperumit pembuktian yang tidak perlu. Jadi metode berikut ini biasa digunakan untuk mendefinisikan bilangan bulat. Hal ini didasarkan pada pernyataan bahwa setiap bilangan bulat adalah selisih dari dua bilangan bulat asli dan bahwa dua selisih tersebut, {{math|''a'' – ''b''}}
Jadi, apabila mendefinisikan secara formal bilangan bulat sebagai [[kelas ekuivalensi]] dari [[pasangan terurut]] bilangan asli di bawah [[relasi ekuivalensi]]
:{{math|(''a'', ''b'') ~ (''c'', ''d'')}} jika dan hanya jika {{math|1=''a'' + ''d'' = ''b'' + ''c''}}.
Baris 277 ⟶ 285:
[[Berkas:AdditionRealCauchy.svg|right|250px|thumb|Menjumlahkan π<sup>2</sup>/6 dan ''e'' menggunakan deret rasional Cauchy.]]
Sayangnya, menangani perkalian potongan Dedekind adalah proses kasus per kasus yang memakan waktu yang mirip dengan penambahan bilangan bulat bertanda.<ref>Schubert, E. Thomas, Phillip J. Windley, dan James Alves-Foss. "Higher Order Logic Theorem Proving and Its Applications: Proceedings of the 8th International Workshop, volume 971 dari." ''Catatan Kuliah di Ilmu Komputer'' (1995).</ref> Pendekatan lain adalah penyelesaian metrik dari bilangan rasional. Bilangan riil pada dasarnya didefinisikan sebagai limit dari [[urutan Cauchy]] dari rasional, lim
* Define <math>\lim_na_n+\lim_nb_n = \lim_n(a_n+b_n).</math><ref>Konstruksi buku teks biasanya tidak begitu angkuh dengan simbol "lim"; lihat Burrill (p. 138) untuk pengembangan penjumlahan yang lebih cermat dan berlarut-larut dengan barisan Cauchy.</ref>
Definisi ini pertama kali diterbitkan oleh [[Georg Cantor]], juga pada tahun 1872, meskipun formalismenya sedikit berbeda.<ref>Ferreirós hal. 128</ref>
Baris 295 ⟶ 303:
==== Vektor ====
{{Main|Penjumlahan vektor}}
Dalam [[aljabar linear]], [[ruang vektor]] adalah struktur aljabar yang mengandung operasi penambahan antara dua [[vektor (spasial)|vektor]] dan [[perkalian skalar]] suatu vektor. Contoh ruang vektor adalah himpunan semua pasangan terurut bilangan real; suatu pasangan terurut bilangan real (''a'',''b'') dianggap sebagai sebuah vektor dari titik nol ke titik (''a'',''b''). Jumlah dua vektor diperoleh dari menambahkan masing-masing koordinatnya:
:<math>(a,b) + (c,d) = (a+c,b+d).</math>
Operasi penambahan ini penting sekali bagi [[mekanika klasik]], di mana [[gaya (fisika)|gaya]] ditafsirkan sebagai vektor.
Baris 355 ⟶ 363:
==== Aritmetika modular ====
{{Main|Aritmetika modular}}
Dalam [[aritmetika modular]], penambahan dua bilangan bulat hasilnya sama dengan bilangan bulat yang [[Relasi kongruensi|kongruen]] dengan jumlah kedua bilangan bulat tersebut.
==== Teori umum ====
Baris 378 ⟶ 386:
Dalam bilangan riil dan kompleks, penjumlahan dan perkalian dapat dipertukarkan dengan [[fungsi eksponensial]]:<ref>Rudin hal. 178</ref>
:<math>e^{a+b} = e^a e^b.</math>
Identitas ini memungkinkan perkalian dilakukan dengan melihat [[tabel matematika|tabel]] dari [[logaritma]] dan menghitung penjumlahan dengan tangan; itu juga memungkinkan perkalian pada [[mistar
Bahkan ada lebih banyak generalisasi perkalian daripada penambahan.<ref>Linderholm (hal. 49) mengamati, "Dengan ''perkalian'', berbicara dengan benar, seorang matematikawan dapat berarti apa saja. Dengan ''penambahan'' dia mungkin berarti banyak hal, tetapi tidak begitu beragam seperti yang dia maksud dengan 'perkalian'."</ref> Secara umum, operasi perkalian selalu [[distributif]] melebihi penjumlahan; persyaratan ini diformalkan dalam definisi [[gelanggang (matematika)|gelanggang]]. Dalam beberapa konteks, seperti bilangan bulat, distribusi pada penjumlahan dan keberadaan identitas perkalian cukup untuk menentukan operasi perkalian secara unik. Sifat distributif juga memberikan informasi tentang penjumlahan; dengan memperluas produk {{nowrap|(1 + 1)(''a'' + ''b'')}} dalam kedua cara, orang menyimpulkan bahwa penambahan dipaksa menjadi komutatif. Oleh karena itu, penjumlahan gelanggang pada umumnya bersifat komutatif.<ref>Dummit dan Foote hal. 224. Agar argumen ini berhasil, kita masih harus berasumsi bahwa penjumlahan adalah operasi grup dan perkalian itu memiliki identitas.</ref>
[[
===Urutan===
Baris 403 ⟶ 411:
Kenaikan, juga dikenal sebagai [[Fungsi penerus|operasi penerus]], adalah penambahan {{num|1}} ke suatu bilangan.
[[Penjumlahan]] menjelaskan penambahan banyak angka secara arbitrer, biasanya lebih dari dua. Ini mencakup gagasan tentang jumlah satu bilangan, yaitu bilangan itu sendiri, dan [[jumlah kosong]], yaitu [[0 (bilangan)|nol]].<ref>Martin hal. 49</ref> Penjumlahan tak hingga adalah prosedur rumit yang dikenal sebagai [[deret (matematika)|deret
[[
[[Integral|Integrasi]] adalah semacam "penjumlahan" pada [[Kontinuum (teori himpunan)|kontinum]], atau lebih tepatnya dan secara umum, pada [[manifold terdiferensiasi]]. Integrasi pada lipatan nol-dimensi direduksi menjadi penjumlahan.
Baris 427 ⟶ 435:
{{Refbegin}}
'''Sejarah'''
* {{cite book |first=José |last=Ferreirós |title=Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics |url=https://archive.org/details/labyrinthofthoug0000ferr |url-access=registration |publisher=Birkhäuser |year=1999 |isbn=978-0-8176-5749-9 }}
* {{cite book |first=Louis |last=Karpinski |author-link=Louis Charles Karpinski |title=The History of Arithmetic |publisher=Rand McNally |year=1925 |id={{LCC|QA21.K3}}}}
* {{cite book |first=Steven |last=Schwartzman |title=The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English |url=https://archive.org/details/wordsofmathemati0000schw |url-access=registration |publisher=[[Mathematical Association of America|MAA]] |year=1994 |isbn=978-0-88385-511-9 }}
* {{cite book |first=Michael |last=Williams |title=A History of Computing Technology |url=https://archive.org/details/historyofcomputi0000will |url-access=registration |publisher=Prentice-Hall |year=1985 |isbn=978-0-13-389917-7 }}
'''Matematika elementer'''
Baris 439 ⟶ 447:
* [https://web.archive.org/web/20051228115904/http://www.cde.ca.gov/be/st/ss/mthmain.asp California State Board of Education mathematics content standards] Adopted December 1997, accessed December 2005.
* {{cite book |author1=Devine, D. |author2=Olson, J. |author3=Olson, M. |title=Elementary Mathematics for Teachers |edition=2e |publisher=[[John Wiley & Sons|Wiley]] |year=1991 |isbn=978-0-471-85947-5 |url=https://archive.org/details/elementarymathem0000devi }}
* {{cite book |author=National Research Council |title=Adding It Up: Helping Children Learn Mathematics |publisher=[[United States National Academies|National Academy Press]] |year=2001 |isbn=978-0-309-06995-3 |author-link=United States National Research Council |url=http://www.nap.edu/books/0309069955/html/index.html |doi=10.17226/9822 |access-date=2021-03-14 |archive-date=2007-06-08 |archive-url=https://web.archive.org/web/20070608181717/http://www.nap.edu/books/0309069955/html/index.html |dead-url=yes }}
* {{cite book |first=John |last=Van de Walle |title=Elementary and Middle School Mathematics: Teaching developmentally |edition=5e |publisher=Pearson |year=2004 |isbn=978-0-205-38689-5 |url=https://archive.org/details/elementarymiddle00vand }}
'''Ilmu kognitif'''
* {{cite book |last1=Fosnot |first1=Catherine T. |last2=Dolk |first2=Maarten |title=Young Mathematicians at Work: Constructing Number Sense, Addition, and Subtraction |url=https://archive.org/details/youngmathematici0000fosn |publisher=Heinemann |year=2001 |isbn=978-0-325-00353-5}}
* {{cite conference |first=Karen |last=Wynn |book-title=The Development of Mathematical Skills. |title=Numerical competence in infants |publisher=Taylor & Francis |year=1998 |isbn=0-86377-816-X}}
'''Eksposisi matematika'''
* {{cite web |author=Bogomolny, Alexander |year=1996 |title=Addition |work=Interactive Mathematics Miscellany and Puzzles (cut-the-knot.org) |url=http://www.cut-the-knot.org/do_you_know/addition.shtml |access-date=3 February 2006 |archive-url=https://web.archive.org/web/20060426110928/http://www.cut-the-knot.org/do_you_know/addition.shtml |archive-date=April 26, 2006 |url-status=live }}
* {{cite book |first=William |last=Dunham |title=The Mathematical Universe |url=https://archive.org/details/mathematicaluniv0000dunh |url-access=registration |publisher=Wiley |year=1994 |isbn=978-0-471-53656-7 }}
* {{cite book |first=Paul |last=Johnson |title=From Sticks and Stones: Personal Adventures in Mathematics |url=https://archive.org/details/fromsticksstones0000unse |publisher=Science Research Associates |year=1975 |isbn=978-0-574-19115-1}}
* {{cite book |first=Carl |last=Linderholm |year=1971 |title=Mathematics Made Difficult |publisher=Wolfe |isbn=978-0-7234-0415-6|title-link=Mathematics Made Difficult }}
* {{cite book |first=Frank |last=Smith |title=The Glass Wall: Why Mathematics Can Seem Difficult |url=https://archive.org/details/glasswallwhymath0000smit |url-access=registration |publisher=Teachers College Press |year=2002 |isbn=978-0-8077-4242-6 }}
* {{cite book |first=Karl |last=Smith |title=The Nature of Modern Mathematics |url=https://archive.org/details/natureofmodernma0000smit |edition=3rd |publisher=Wadsworth |year=1980 |isbn=978-0-8185-0352-8}}
'''Matematika tingkat lanjut'''
* {{cite book |first=George |last=Bergman |title=An Invitation to General Algebra and Universal Constructions |edition=2.3 |publisher=General Printing |year=2005 |isbn=978-0-9655211-4-7 |url=http://math.berkeley.edu/~gbergman/245/index.html }}
* {{cite book |first=Claude |last=Burrill |title=Foundations of Real Numbers |url=https://archive.org/details/foundationsofrea0000clau |publisher=McGraw-Hill |year=1967 |id={{LCC|QA248.B95}}}}
* {{cite book |author1=Dummit, D. |author2=Foote, R. |title=Abstract Algebra |edition=2 |publisher=Wiley |year=1999 |isbn=978-0-471-36857-1}}
* {{cite book |first=Herbert |last=Enderton |title=Elements of Set Theory |url=https://archive.org/details/elementsofsetthe0000ende |publisher=[[Academic Press]] |year=1977 |isbn=978-0-12-238440-0}}
* {{cite book |first=John |last=Lee |title=Introduction to Smooth Manifolds |url=https://archive.org/details/introductiontosm0000leej |publisher=Springer |year=2003 |isbn=978-0-387-95448-6}}
* {{cite book |first=John |last=Martin |title=Introduction to Languages and the Theory of Computation |url=https://archive.org/details/introductiontola0000mart |publisher=McGraw-Hill |edition=3 |year=2003 |isbn=978-0-07-232200-2 }}
* {{cite book |first=Walter |last=Rudin |title=Principles of Mathematical Analysis |url=https://archive.org/details/principlesofmath00rudi |url-access=registration |edition=3 |publisher=McGraw-Hill |year=1976 |isbn=978-0-07-054235-8 }}
* {{cite book |first=James |last=Stewart |title=Calculus: Early Transcendentals |edition=4 |publisher=Brooks/Cole |year=1999 |isbn=978-0-534-36298-0 |url=https://archive.org/details/calculusearlytra00stew }}
Baris 475 ⟶ 483:
* {{cite book |author1=Flynn, M. |author2=Oberman, S. |title=Advanced Computer Arithmetic Design |publisher=Wiley |year=2001 |isbn=978-0-471-41209-0}}
* {{cite book |author1=Horowitz, P. |author2=Hill, W. |title=The Art of Electronics |edition=2 |publisher=Cambridge UP |year=2001 |isbn=978-0-521-37095-0 |url=https://archive.org/details/artofelectronics00horo }}
* {{cite book |first=Albert |last=Jackson |title=Analog Computation |url=https://archive.org/details/analogcomputatio0000albe |publisher=McGraw-Hill |year=1960 |id={{LCC|QA76.4|J3}}}}
* {{cite book |author1=Truitt, T. |author2=Rogers, A. |title=Basics of Analog Computers |url=https://archive.org/details/basicsofanalogco0000trui |publisher=John F. Rider |year=1960 |id={{LCC|QA76.4|T7}}}}
* {{cite book |ref=MARG |language=fr |title=Histoire des Instruments et Machines à Calculer, Trois Siècles de Mécanique Pensante 1642–1942 |first=Jean |last=Marguin |year=1994 |publisher=Hermann |isbn=978-2-7056-6166-3}}
* {{cite book |ref=TATON63 |language=fr |title=Le Calcul Mécanique. Que Sais-Je ? n° 367 |first=René |last=Taton |year=1963 |pages=20–28 |publisher=Presses universitaires de France }}
|