Aturan sinus: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Hadithfajri (bicara | kontrib) Tidak ada ringkasan suntingan |
Fitur saranan suntingan: 3 pranala ditambahkan. |
||
(5 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 10:
Hukum sinus bagi [[Trigonometri bola|segitiga yang terletak pada bola]] ditemukan pada abad ke-10. Penemuan ini banyak diatribusikan kepada [[Abu-Mahmud Khojandi]], [[Abul Wafa Muhammad Al Buzjani]], [[Nasir al-Din al-Tusi|Nashiruddin ath-Thusi]], dan [[Abu Nashr Mansur]].<ref name="Sesiano">Sesiano hanya mencatat al-Wafa sebagai seorang kontributor. Sesiano, Jacques (2000) "Islamic mathematics" pp. 137–157, dalam {{citation|title=Mathematics Across Cultures: The History of Non-western Mathematics|first1=Helaine|last1=Selin|first2=Ubiratan|last2=D'Ambrosio|year=2000|publisher=[[Springer Science+Business Media|Springer]]|isbn=1-4020-0260-2}}
"... .Spherical geometry was based on Menelaus's Spherics (and, in particular, its theorem IIIJ.1) and gave rise through Abu'l-Wafii' al-Buzjani (940-997/8) to the law of sines for spherical triangles,
<math>\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}</math>
Baris 16:
where <math>a,\,b,\,c</math> are the sides and <math>\alpha,\,\beta,\,\gamma</math> the opposite angles</ref>
Pada abad ke-11, buku [[Ibn Muʿādh al-Jayyānī]]' mengandung hukum sinus secara umum.<ref name="MacTutor Al-Jayyani">{{MacTutor|id=Al-Jayyani|title=Abu Abd Allah Muhammad ibn Muadh Al-Jayyani}}</ref><ref name=":0">{{Cite book|date=1997|url=https://www.worldcat.org/oclc/37996126|title=Histoire des sciences arabes|location=Paris|isbn=2-02-030355-8|others=Rushdī Rāshid, Régis Morelon|oclc=37996126}}</ref> Hukum sinus pada bidang [datar] kemudian dinyatakan oleh [[Nasir al-Din al-Tusi|Nashiruddin ath-Thusi]] pada abad ke-13.<ref name=":0" /> Dalam karyanya ''Tentang Gambar Sektor'', <!-- Bahasa Inggris: On the Sector Figure. Saya menerjemahkan dengan menggunakan asumsi Sector memiliki artian yang sama dengan definisi kata "sektor" di KBBI, "tembereng tajam". Tolong koreksi. --Kekavigi -->ia menuliskan hukum sinus untuk bidang datar dan untuk permukaan bola, dan memberikan rumus untuk kedua hukum ini.<ref>{{cite book|last=Berggren|first=J. Lennart|year=2007|title=The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook|url=https://archive.org/details/mathematicsofegy0000unse|publisher=Princeton University Press|isbn=978-0-691-11485-9|page=[https://archive.org/details/mathematicsofegy0000unse/page/518 518]|chapter=Mathematics in Medieval Islam}}</ref>
Pada abad ke-15, matematikawan Jerman [[Regiomontanus]] menggunakan hukum sinus sebagai fondasi solusi tentang masalah yang berkaitan dengan [[segitiga siku-siku]]. Solusi yang tertulis pada Buku IV-nya pada gilirannya menjadi dasar solusi masalah yang berkaitan dengan segitiga secara umum.<ref>Glen Van Brummelen (2009). "''[https://books.google.com/books?id=bHD8IBaYN-oC&pg=&dq&hl=en#v=onepage&q=&f=false The mathematics of the heavens and the earth: the early history of trigonometry]''". Princeton University Press. p.259. {{isbn|0-691-12973-8}}</ref>
== Bukti ==
Baris 37:
== Kasus ambigu ==
Ketika menggunakan aturan sinus untuk menentukan panjang sisi suatu segitiga, kasus ambigu dapat terjadi ketika terdapat dua segitiga dapat dibuat dari informasi yang diketahui (dengan kata lain, akan menghasilkan dua solusi berbeda). Kasus ini mungkin saja terjadi karena ada dua nilai sudut yang benar antara 0° dan 180° yang memiliki nilai sinus yang sama.
: [[Berkas:PictureAmbitext_(Greek_angles).svg|319x319px|Kasus ambigu penggunaan aturan sinus untuk mencari panjang sisi segitiga. Apabila diberikan besar sudut <math>\alpha</math>, juga panjang sisi <math>a</math> dan <math>c</math>, maka kedua-dua segitiga {{math|''ABC''}} dan {{math|''ABC′''}} adalah benar.|jmpl]]
Baris 55:
== Hubungan dengan lingkaran luar segitiga ==
Pada identitas<math display="block"> \frac{a}{\sin{\alpha}} = \frac{b}{\sin{\beta}} = \frac{c}{\sin{\gamma}},</math>ketiga pecahan tersebut memiliki nilai yang sama dengan panjang [[diameter]] dari [[lingkaran luar]] segitiga. Bukti mengenai hal ini dapat ditelusuri sampai ke [[Ptolemy]].<ref>Coxeter, H. S. M. and Greitzer, S. L. ''Geometry Revisited''. Washington, DC: Math. Assoc. Amer., pp. 1–3, 1967</ref><ref name=":02">{{Cite web|title=Law of Sines|url=http://www.pballew.net/lawofsin.html|website=www.pballew.net|access-date=2018-09-18|archive-date=2018-09-10|archive-url=https://web.archive.org/web/20180910164536/http://www.pballew.net/lawofsin.html|dead-url=yes}}</ref>
=== Bukti ===
[[Berkas:Sinelaw_radius_(Greek_angles).svg|jmpl|Membuktikan nilai rasio pada aturan sinus sama dengan panjang diameter lingkaran luar segitiga. Perhatikan bahwa segitiga {{math|''ADB''}} melalui pusat lingkaran yang berdiameter {{math|''d''}}.]]
Seperti terlihat pada gambar, misalkan ada sebuah lingkaran yang memuat segitiga <math> \triangle ABC</math>, dan memuat segitiga lain <math> \triangle ADB</math> yang sisinya melewati pusat lingkaran '''O'''.<ref group="nb">Memuat, dalam artian semua titik sudut segitiga terletak pada lingkaran.</ref> Sudut <math> \angle AOD</math> memiliki [[sudut pusat]] sebesar <math> 180^\circ</math>, sehingga sudut <math> \angle ABD = 90^\circ</math>. Karena merupakan segitiga siku-siku, pada segitiga <math> \triangle ABD</math>
dengan <math display="inline"> R= \frac{d}{2}</math> adalah {{equation box 1|equation=<math> \frac{a}{\sin{\alpha}} = \frac{b}{\sin{\beta}} = \frac{c}{\sin{\gamma}}=2R.</math>}}
Baris 75 ⟶ 77:
== Kasus hiperbolik ==
{{See also|segitiga hiperbolik}}
Dalam [[geometri hiperbolik]] dengan kurvatur bernilai −1, aturan sinus berubah menjadi<math display="block">\frac{\sin A}{\sinh a} = \frac{\sin B}{\sinh b} = \frac{\sin C}{\sinh c} \,.</math>Pada kasus khusus dengan {{math|''B''}} berupa sudut siku-siku, dihasilkan<math display="block">\sin C = \frac{\sinh c}{\sinh b} </math>yang mirip dengan rumus pada [[geometri Euklides]], yang menyatakan sinus sebagai perbandingan panjang sisi berlawanan dengan sisi hipotenusa.
== Pada permukaan bola ==
Baris 81 ⟶ 83:
Aturan sinus pada permukaan bola memberikan hubungan trigonometrik pada segitiga yang sisi-sisinya berupa [[lingkaran besar]].
Misalkan radius dari bola adalah 1. Misalkan pula {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}} adalah panjang dari segmen-segmen lingkaran besar yang menjadi sisi-sisi segitiga. Karena bola berupa bola satuan, panjang {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}} sama dengan besar-besar sudut (dalam [[radian]]) dari pusat bola, yang membentuk segmen-segmen lingkaran besar. Misalkan juga {{math|''A''}}, {{math|''B''}}, dan {{math|''C''}} adalah sudut-sudut yang berhadapan dengan masing-masing sisi segitiga. Aturan sinus pada permukaan bola menyatakan bahwa<math display="block">\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.</math>
== Pada permukaan dengan kurvatur konstan ==
Baris 95 ⟶ 97:
== Rujukan ==
{{Reflist}}
[[Kategori:Trigonometri]]
[[Kategori:Segitiga]]
|