Aturan sinus: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20220609)) #IABot (v2.0.8.8) (GreenC bot
Dpratiwi (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
 
(2 revisi perantara oleh 2 pengguna tidak ditampilkan)
Baris 10:
Hukum sinus bagi [[Trigonometri bola|segitiga yang terletak pada bola]] ditemukan pada abad ke-10. Penemuan ini banyak diatribusikan kepada [[Abu-Mahmud Khojandi]], [[Abul Wafa Muhammad Al Buzjani]], [[Nasir al-Din al-Tusi|Nashiruddin ath-Thusi]], dan [[Abu Nashr Mansur]].<ref name="Sesiano">Sesiano hanya mencatat al-Wafa sebagai seorang kontributor. Sesiano, Jacques (2000) "Islamic mathematics" pp. 137–157, dalam {{citation|title=Mathematics Across Cultures: The History of Non-western Mathematics|first1=Helaine|last1=Selin|first2=Ubiratan|last2=D'Ambrosio|year=2000|publisher=[[Springer Science+Business Media|Springer]]|isbn=1-4020-0260-2}}
 
"... .Spherical geometry was based on Menelaus's Spherics (and, in particular, its theorem IIIJ.1) and gave rise through Abu'l-Wafii' al-Buzjani (940-997/8) to the law of sines for spherical triangles,
 
<math>\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}</math>
Baris 18:
Pada abad ke-11, buku [[Ibn Muʿādh al-Jayyānī]]' mengandung hukum sinus secara umum.<ref name="MacTutor Al-Jayyani">{{MacTutor|id=Al-Jayyani|title=Abu Abd Allah Muhammad ibn Muadh Al-Jayyani}}</ref><ref name=":0">{{Cite book|date=1997|url=https://www.worldcat.org/oclc/37996126|title=Histoire des sciences arabes|location=Paris|isbn=2-02-030355-8|others=Rushdī Rāshid, Régis Morelon|oclc=37996126}}</ref> Hukum sinus pada bidang [datar] kemudian dinyatakan oleh [[Nasir al-Din al-Tusi|Nashiruddin ath-Thusi]] pada abad ke-13.<ref name=":0" /> Dalam karyanya ''Tentang Gambar Sektor'', <!-- Bahasa Inggris: On the Sector Figure. Saya menerjemahkan dengan menggunakan asumsi Sector memiliki artian yang sama dengan definisi kata "sektor" di KBBI, "tembereng tajam". Tolong koreksi. --Kekavigi -->ia menuliskan hukum sinus untuk bidang datar dan untuk permukaan bola, dan memberikan rumus untuk kedua hukum ini.<ref>{{cite book|last=Berggren|first=J. Lennart|year=2007|title=The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook|url=https://archive.org/details/mathematicsofegy0000unse|publisher=Princeton University Press|isbn=978-0-691-11485-9|page=[https://archive.org/details/mathematicsofegy0000unse/page/518 518]|chapter=Mathematics in Medieval Islam}}</ref>
 
Pada abad ke-15, matematikawan Jerman [[Regiomontanus]] menggunakan hukum sinus sebagai fondasi solusi tentang masalah yang berkaitan dengan [[segitiga siku-siku]]. Solusi yang tertulis pada Buku IV-nya pada gilirannya menjadi dasar solusi masalah yang berkaitan dengan segitiga secara umum.<ref>Glen Van Brummelen (2009). "''[https://books.google.com/books?id=bHD8IBaYN-oC&pg=&dq&hl=en#v=onepage&q=&f=false The mathematics of the heavens and the earth: the early history of trigonometry]''". Princeton University Press. p.259. {{isbn|0-691-12973-8}}</ref>
 
== Bukti ==
Baris 59:
=== Bukti ===
[[Berkas:Sinelaw_radius_(Greek_angles).svg|jmpl|Membuktikan nilai rasio pada aturan sinus sama dengan panjang diameter lingkaran luar segitiga. Perhatikan bahwa segitiga {{math|''ADB''}} melalui pusat lingkaran yang berdiameter {{math|''d''}}.]]
Seperti terlihat pada gambar, misalkan ada sebuah lingkaran yang memuat segitiga <math> \triangle ABC</math>, dan memuat segitiga lain <math> \triangle ADB</math> yang sisinya melewati pusat lingkaran '''O'''.<ref group="nb">Memuat, dalam artian semua titik sudut segitiga terletak pada lingkaran.</ref> Sudut <math> \angle AOD</math> memiliki [[sudut pusat]] sebesar <math> 180^\circ</math>, sehingga sudut <math> \angle ABD = 90^\circ</math>. Karena merupakan segitiga siku-siku, pada segitiga <math> \triangle ABD</math> merupakan segitiga siku-siku, berlaku<math display="block"> \sin{\delta}= \frac{\text{sisi lawandepan}}{\text{hipotenusamiring}}= \frac{c}{2R},</math>

dengan <math display="inline"> R= \frac{d}{2}</math> adalah radiusjari-jari dari lingkaran yang memuat segitiga.<ref name=":02" /> Sudut <math>{\gamma}</math> dan <math>{\delta}</math> memiliki sudut pusat yang sama, sehingga besar sudut mereka sama: <math>{\gamma} = {\delta}</math>. Maka disimpulkan,<math display="block"> \sin{\delta} = \sin{\gamma} = \frac{c}{2R}.</math>Dengan menyusun kembali suku-suku, dihasilkan<math display="block"> 2R = \frac{c}{\sin{\gamma}}.</math>Proses di atas dapat diulangi dengan membentuk <math> \triangle ADB</math> yang berbeda, sehingga menghasilkan persamaan
 
{{equation box 1|equation=<math> \frac{a}{\sin{\alpha}} = \frac{b}{\sin{\beta}} = \frac{c}{\sin{\gamma}}=2R.</math>}}
Baris 75 ⟶ 77:
== Kasus hiperbolik ==
{{See also|segitiga hiperbolik}}
Dalam [[geometri hiperbolik]] dengan kurvatur bernilai −1, aturan sinus berubah menjadi<math display="block">\frac{\sin A}{\sinh a} = \frac{\sin B}{\sinh b} = \frac{\sin C}{\sinh c} \,.</math>Pada kasus khusus dengan {{math|''B''}} berupa sudut siku-siku, dihasilkan<math display="block">\sin C = \frac{\sinh c}{\sinh b} </math>yang mirip dengan rumus pada [[geometri Euklides]], yang menyatakan sinus sebagai perbandingan panjang sisi berlawanan dengan sisi hipotenusa.
 
== Pada permukaan bola ==
Baris 81 ⟶ 83:
Aturan sinus pada permukaan bola memberikan hubungan trigonometrik pada segitiga yang sisi-sisinya berupa [[lingkaran besar]].
 
Misalkan radius dari bola adalah 1. Misalkan pula {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}} adalah panjang dari segmen-segmen lingkaran besar yang menjadi sisi-sisi segitiga. Karena bola berupa bola satuan, panjang {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}} sama dengan besar-besar sudut (dalam [[radian]]) dari pusat bola, yang membentuk segmen-segmen lingkaran besar. Misalkan juga {{math|''A''}}, {{math|''B''}}, dan {{math|''C''}} adalah sudut-sudut yang berhadapan dengan masing-masing sisi segitiga. Aturan sinus pada permukaan bola menyatakan bahwa<math display="block">\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.</math>
 
== Pada permukaan dengan kurvatur konstan ==
Baris 95 ⟶ 97:
== Rujukan ==
{{Reflist}}
 
[[Kategori:Trigonometri]]
[[Kategori:Segitiga]]