Abar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
RaFaDa20631 (bicara | kontrib)
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20231209)) #IABot (v2.0.9.5) (GreenC bot
(10 revisi perantara oleh 7 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Abar pada gerbong barang gandar dua..jpg|al=Abar pada gerbong barang gandar dua.|jmpl|Abar pada gerbong barang gandar dua.]]
{{under construction}}
{{More citations needed|date=June 2008}}
[[File:Klotzbremse MaK 450 C.jpg|thumb|right|Abar jepit tradisional: kampas rem yang terbuat dari baja cor ini (cokelat) menekan permukaan flens roda dan digerakkan oleh sistem tuas di sebelah kirinya]]
'''Abar''' atau '''rem kereta api''' adalah jenis [[rem]] yang dipasang pada [[bakal pelanting]] kereta api untuk melambatkan, menghentikan, mengontrol percepatan dan perlambatan (saat menyusuri gunung), atau menjaga agar sarana tidak jalan sendiri saat diparkir. Meski prinsipnya sama dengan rem pada kendaraan beroda karet, pengoperasiannya sangat kompleks karena memerlukan koordinasi antarsarana dan efektif pada sarana tanpa penggerak. Abar jepit banyak digunakan secara historis dalam kereta api.
 
Baris 10 ⟶ 8:
Pengembangan lainnya adalah sistem abar uap pada lokomotif uap. Pada abar uap, tekanan uap dari ketel dapat digunakan untuk mengikat blok rem pada roda lokomotif. Saat kecepatan kereta api meningkat, kebutuhan untuk menyediakan sistem pengereman yang efektif sangat dibutuhkan oleh masinis, disebut juga abar ''kontinu'' karena pengereman dilakukan secara efektif menyesuaikan panjang KA,
 
Di Britania Raya, kecelakaan KA Abbots Ripton pada Januari 1876 diperparah oleh jarak penghentian kereta api ekspres yang kala itu tidak diperlengkapi abar kontinu, yang dalam keadaan yang kurang pakem dapat menyebabkan pelanggaran sinyal. Hal ini menjadi jelas saat dilakukan pengujian abar kereta api di [[Newark-on-Trent|Newark]] pada tahun sebelumnya, untuk membantu [[Royal Commission]] menyelidiki kecelakaan kereta api. Menurut seorang pegawai KA, terlihat bahwa dalam keadaan normal, perlu jarak 800 yar (731.52 meter) hingga 1200 yar (1097.28 meter) untuk menarik KA pada kecepatan 45½ (73.7 km/jam) hingga 48½ mil per jam (78.0 km/jam), dan ini berada di bawah puncak kecepatan dari kereta ekspres tercepat. Pegawai KA tersebut sama sekali kurang mempersiapkan pengereman sehingga agar dapat berhenti, KA memerlukan daya rem yang lebih besar.<ref>T E Harrison (Chief Engineer of the North Eastern Railway at the time, document of December 1877 quoted (page 193) in F.A.S.Brown ''Great Northern Railway Engineers'' Volume One: 1846–1881, George Allen & Unwin, London, 1966: (for those who feel the Victorians should have metric conversions backfitted: at speeds of {{convert|45.5|mph|km/h}} - {{convert|48.5|mph|km/h}} stopping distances were {{convert|800|yd|m}} - {{convert|1200|yd|m}})</ref>
 
Berikut ini adalah hasil percobaan tersebut:<ref name="Inquiry">{{cite web|last1=Tyler|first1=H W|title=Report of the Court of Inquiry into the Circumstances Attending the Double Collision on the Great Northern Railway which occurred at Abbotts Ripton on 21 January 1876|url=http://www.railwaysarchive.co.uk/documents/BoT_AbbottsRipton1876.pdf|website=Railways Archive|publisher=HMSO|accessdate=27 May 2018}}</ref>
Baris 42 ⟶ 40:
 
* {{anchor|spring brake}}Sistem pegas: James Newall, produsen sarana untuk [[Lancashire and Yorkshire Railway]], pada 1853 telah mematenkan sistem batang berputar mengikuti panjang kereta api yang digunakan untuk memutar tuas abar pada tiap kereta terhadap gaya pegas kerucut yang dipasang pada silinder abar. Batang ini, yang dipasang pada atap kereta menggunakan ''bearing'' karet, dihubungkan dengan sambungan universal dan penggeser pendek untuk menekan boper. Abarnya dikontrol dari kereta/gerbong paling belakang. Petugas rem akan memutar batang tersebut sehingga menekan pegas untuk melepas abar; batang itu ditahan menggunakan roda gigi searah (meski dalam keadaan darurat masinis dapat menarik tali untuk melepas roda gigi searah itu). Saat roda gigi searahnya dilepas, pegas itu akan mengikat abar. Saat rangkaian KA dilepas, abar tidak dilepas menggunakan roda gigi searah dalam kompartemen petugas abar dan pegas di tiap kereta memaksa agar abar tetap pada roda. Celah antaralat perangkai yang terlalu besar dapat menurunkan keefektifan peralatan ini hingga sekitar lima kereta/gerbong; petugas dan kompartemen abar tambahan dibutuhkan jika jumlah ini terlampaui. Peralatan ini telah dijual ke banyak perusahaan kereta dan telah direkomendasikan oleh Board of Trade. L&Y telah menyelenggarakan percobaan menggunakan sistem yang mirip dengan ini, dilakukan oleh pegawai lainnya, Charles Fay, tetapi ada perbedaan kecil di samping keefektifannya. Dalam versi Fay yang dipatenkan tahun 1856, batang tersebut dipasang di bawah sarana dan pegasnya digantikan dengan paku ulir.<ref>{{cite journal|title=Newall's Patent for Improvements in Railway Breaks, &c.|journal=The Repertory of Patent Inventions|volume=XXIII|issue=1|page=4|date=January 1854|place=London|publisher=Alexander Macintosh}}</ref><ref>{{cite book |last1=Winship |first1=Ian R |editor1-last=Smith |editor1-first=Norman A F |title=History of Technology |date=1987 |publisher=Mansell |location=London |chapter=The acceptance of continuous brakes on railways in Britain|volume=11|isbn=978-1-3500-1847-1}}</ref><ref>{{cite book|title=Bradshaw's General Railway Directory, Shareholders' Guide, Manual and Almanack|date=1864|location=London|page=Front matter|edition=XVI}}</ref><ref>{{cite journal |title=Continuous Brakes |journal=[[The Times]] |date=24 November 1876 |page=3 |location=London}}</ref>
* Abar rantai, yang disambungkan secara kontinu padadi sepanjang rangkaian kereta. Saat ditarik keras, abar ini akan mengaktifkan kopling gesek yang memanfaatkan perputaran roda untuk mengikat rem; sistem ini memiliki batasan terkait panjang kereta api yang mampu dihentikan (karena kekuatan abarnya menjadi lemah setelah kereta ketiga), untuk mendapatkan pengaturan yang lebih baik (bergantung pada kendurnya perangkai tipe penambat, yang tidak dapat ditentukan hanya menggunakan rantai tetap). Di Amerika Serikat, abar rantai dikembangkan dan dipatenkan independen oleh Lucious Stebbins dari [[Hartford, Connecticut]] tahun 1848 dan oleh William Loughridge dari [[Weverton, Maryland]] tahun 1855.<ref name="White2">{{cite book|url=https://books.google.com/books?id=bz0OBGxRjjcC&pg=PA546&lpg=PA545|title=The American Railroad Passenger Car|last=White|first=John H., Jr.|publisher=Johns Hopkins University Press|year=1985|isbn=9780801827471|volume=Part 2|location=Baltimore, Maryland|page=545}}</ref> Versi Britania Rayanya dikenal sebagai abar Clark dan Webb, dinamai dari John Clark, yang mengembangkannya sejak 1840-an, dan Francis William Webb, yang menyempurnakannya pada 1875.<ref name="Grace2">{{cite web|url=https://www.gracesguide.co.uk/Clark_and_Webb|title=Clark and Webb|date=2 March 2016|website=Grace's Guide to British Industrial History}}</ref> Abar rantai terus digunakan hingga dekade 1870-an di Amerika<ref name="White2" /> dan 1890-an di Britania Raya.<ref name="Grace2" />
* Abar hidraulik. Seperti halnya rem mobil; memberikan tekanan untuk mengikat rem menggunakan transmisi hidraulik. Hal ini cukup disukai dalam sistem perkeretaapian Britania Raya (misalnya di Midland dan Great Eastern Railways), tetapi air digunakan sebagai fluida hidraulik dan bahkan di Britania Raya "pembekuan air mungkin menjadi kelemahan sistem ini, meski Great Eastern Railway, yang juga mempergunakan abar hidraulik, menyiasati masalah ini dengan menggunakan air garam." <ref>{{cite book|title=Nineteenth Century Railway Carriages|last1=Ellis|first1=Hamilton|date=1949|publisher=Modern Transport Publishing|location=London|page=58}}The Midland supplied both the hydraulic-braked trains trialed at Newark (see below)</ref>[[Berkas:RotairValveAriBrakeSRM.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:RotairValveAriBrakeSRM.jpg|al=|jmpl|Tuas{{Pranala mati|date=Januari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} abar anginudara tekan buatan [[Westinghouse Air Brake Company]]<ref name="SRM">{{cite web|url=http://www.saskrailmuseum.org/|title=Welcome to Saskrailmuseum.org|date=September 11, 2008|work=Contact Us|archiveurl=https://web.archive.org/web/20081015051856/http://www.saskrailmuseum.org/|archivedate=October 15, 2008|accessdate=October 3, 2008|url-status=dead}}</ref>]]
 
* Abar vakum sederhana. Alat ejektor dalam lokomotif akan menghasilkan vakum dalam pipa kontinu di sepanjang rangkaian kereta, memungkinkan tekanan udara luar untuk mengoperasikan silinder abar di tiap sarana. Meski sistem ini cukup murah dan efektif, kelemahan besarnnya adalah abar ini tidak dapat beroperasi jika rangkaian dilepas atau pipa keretanya bocor.
* Abar vakum otomatis. Mirip dengan abar vakum sederhana, kecuali bahwa menghasilkan vakum dalam pipa kereta akan mengeluarkan tekanan tangki vakum di tiap sarana dan akan ''melepas'' abar. Saat masinis mengerem, katup abarnya memasukkan udara atmosfer ke dalam pipa kereta, dan tekanan atmosferisnya akanmengisi mengikattangki abarvakum terhadapsehingga vakumabar dalampun tangki vakumterikat. Sebagai abar otomatis, sistem ini akan mengerem bila rangkaian dipecah atau bila pipanya bocor. Kelemahannya, tangki vakum yang besar sangat dibutuhkan di tiap sarana, dan mekanisme kerjanya yang rumit justru dianggap tidak menyenangkan.
* Sistem abar udara tekan [[George Westinghouse|Westinghouse]]. Pada sistem ini, tangki udara ada pada setiap sarana dan lokomotif akan mengisi pipa abar menggunakan tekanan udara positif, yang melepas abar dan mengisi tangki abar utama. Jika masinis mengerem, katup abarnya melepaskan udara dari pipa abar, dan tiga katup di tiap sarana mendeteksi kehilangan tekanan udara dan mengalirkan udara dari tangki udara ke silinder abar sehingga mengikat abar. Sistem Westinghouse menggunakan tangki udara dan silinder abar yang lebih kecil daripada sistem vakum, karena tekanan udara dapat digunakan baik menengah maupun tinggi. Akan tetapi, kompresor udara harus digunakan untuk menghasilkan udara tekan dan pada saat-saat awal penggunaannya di perkeretaapian, sistem ini memerlukan kompresor uap bolak-balik yang sangat besar, dan ini dianggap oleh banyak masinis sebagai sesuatu yang tidak perludisukai. Kelemahan sistem ini adalah perlunya melepas ikatan rem dengan sempurna agar abarnya juga terikat dengan baik—banyak sekali kecelakaan terjadi ketika daya abar tidak cukup untuk mengerem dengan sempurna.<ref name="Oxford">A "simple" vacuum brake, with no fail-safe capability, invented by James Young Smith, in the U.S. {{cite book|title=The Oxford Companion to British Railway History|last1=Simmons|first1=Jack|last2=Biddle|first2=Gordon|publisher=Oxford University Press|year=1997|isbn=978-0-19-211697-0|location=Oxford, England|page=42|authorlink1=Jack Simmons (historian)}}</ref>
 
Catatan: sistem ini juga memiliki banyak variasi dan pengembangan.
 
Percobaan Newark ini menunjukkan bahwa kinerja pengereman sistem abar Westinghouse adalah yang paling baik:<ref>data below from {{cite book|title=Nineteenth Century Railway Carriages|last1=Ellis|first1=Hamilton|date=1949|publisher=Modern Transport Publishing|location=London|page=59}} - ranked in order of merit ''' after allowing for weight of train''' - italicised systems were not truly continuous</ref> tetapi untuk alasan lain<ref>simplicity of engineering as a technical reason; but there seem to have been strong non-technical reasons to do with Westinghouse's salesmanship</ref> sistem vakum lebih disukai dalam perkeretaapian Inggris.
{| class="wikitable"
|-
!rowspan=2| BrakingSistem systemabar
!colspan=2| TrainBerat weightkereta withdengan enginelokomotif
!colspan=2| Train speedKelajuan
!colspan=2| StoppingJarak distancepenghentian
!rowspan=2| TimeWaktu topenghentian stop<br>(s)
!colspan=2| DecelerationPerlambatan
!rowspan=2| RailsJenis rel
|-
!ton panjang!!tonne
!long tons!!tonnes
!mphmil/jam!!km/hjam
!yd!!m
!''g''!!m/s<sup>2</sup>
|-
| WestinghouseOtomatis vacuumWestinghouse
| Westinghouse automatic
|align=right| 203&nbsp;ton 4&nbsp;cwt
|align=right| {{convert|203|LT|4|Lcwt|t|disp=number}}
Baris 74 ⟶ 71:
|align=right| 19
| {{convert|0.099|g0|m/s2|disp=table}}
| rowspan="5" align="right" | drykering
|-
| Hidraulik Clark
| ''Clark hydraulic''
|align=right| 198&nbsp;ton 3&nbsp;cwt
|align=right| {{convert|198|LT|3|Lcwt|t|disp=number}}
| {{convert|52|mph|km/h|disp=table}}
| {{convert|404|yd|m|disp=table}}
|align=right| 22.,75
| {{convert|0.075|g0|m/s2|disp=table}}
|align=right| dry
|-
| Vakum Smith vacuum<ref name=Oxford>A "simple" vacuum brake, with no fail-safe capability, invented by James Young Smith, in the U.S. {{cite book|last1=Simmons|first1=Jack|authorlink1=Jack Simmons (historian)|last2=Biddle|first2=Gordon|title=The Oxford Companion to British Railway History|url=https://archive.org/details/oxfordcompaniont0000unse_z2r0|year=1997|publisher=Oxford University Press|location=Oxford, England|isbn=978-0-19-211697-0|page=[https://archive.org/details/oxfordcompaniont0000unse_z2r0/page/42 42]}}</ref>
|align=right| 262&nbsp;ton 7&nbsp;cwt
|align=right| {{convert|262|LT|7|Lcwt|t|disp=number}}
Baris 92 ⟶ 88:
|align=right| 29
| {{convert|0.057|g0|m/s2|disp=table}}
|align=right| dry
|-
| ''Rantai Clark anddan Webb chain''
|align=right| 241&nbsp;ton 10&nbsp;cwt
|align=right| {{convert|241|LT|10|Lcwt|t|disp=number}}
Baris 101 ⟶ 96:
|align=right| 29
| {{convert|0.056|g0|m/s2|disp=table}}
|align=right| dry
|-
| Hidarulik Barker
| Barker's hydraulic
|align=right| 210&nbsp;ton 2&nbsp;cwt
|align=right| {{convert|210|LT|2|Lcwt|t|disp=number}}
Baris 110 ⟶ 104:
|align=right| 32
| {{convert|0.056|g0|m/s2|disp=table}}
|align=right| dry
|-
| WestinghouseVakum automaticWestinghouse
| Westinghouse vacuum
|align=right| 204&nbsp;ton 3&nbsp;cwt
|align=right| {{convert|204|LT|3|Lcwt|t|disp=number}}
| {{convert|52|mph|km/h|disp=table}}
| {{convert|576|yd|m|disp=table}}
|align=right| 34.,5
| {{convert|0.052|g0|m/s2|disp=table}}
| rowspan="3" align="right" | wetbasah
|-
| Mekanik Fay
| ''Fay mechanical''
|align=right| 186&nbsp;ton 3&nbsp;cwt
|align=right| {{convert|186|LT|3|Lcwt|t|disp=number}}
| {{convert|44.5|mph|km/h|disp=table}}
| {{convert|388|yd|m|disp=table}}
|align=right| 27.,5
| {{convert|0.057|g0|m/s2|disp=table}}
|align=right| wet
|-
| Udara Steel &dan McInnes air
|align=right| 197&nbsp;ton 7&nbsp;cwt
|align=right| {{convert|197|LT|7|Lcwt|t|disp=number}}
| {{convert|49.5|mph|km/h|disp=table}}
| {{convert|534|yd|m|disp=table}}
|align=right| 34.,5
| {{convert|0.051|g0|m/s2|disp=table}}
|align=right| wet
|}
 
=== Praktik Britania selanjutnya ===
==Referensi==
Dalam perkeretaapian Britania, hanya KA penumpang yang diberikan abar kontinu hingga sekitar 1930; KA angkutan barang dan mineral berjalan dalam kecepatan rendah dan bergantung pada pengereman dari lokomotif, tender, dan [[kabus]]—gerbong yang cukup berat yang dipasang di rangkaian paling belakang dan dijaga oleh juru abar.
 
Sarana perkeretaapian barang memiliki abar tangan yang dioperasikan menggunakan keran abar oleh pegawai. Abar tangan ini digunakan jika sarana hendak diparkir tetapi juga dipakai apabila kereta menuruni bukit. KA akan berhenti di puncak kelandaian, dan pelayan remnya akan menutup sedikit keran abar tersebut sehingga saat KA menurun bukit, abar terikat sedikit. Sarana KA barang awal memiliki keran abar hanya pada salah satu sisinya tetapi, sejak sekitar 1930, keran ini wajib ada di kedua sisi kereta. KA dengan keran abar ini disebut ''unfitted'' (tanpa abar kontinu) digunakan di Britania Raya hingga 1985. Sejak sekitar 1930, kereta dengan abar setengah kontinu juga diperkenalkan, yakni KA tersebut sudah diperlengkapi abar kontinu, sehingga menghasilkan pengereman yang lebih efisien saat melaju kencang daripada tanpa abar kontinu. Percobaan Januari 1952 telah membuktikannya dengan 52 gerbong KA batu bara seberat 850 ton, melaju sejauh {{convert|127|mi}} dengan kecepatan rata-rata {{convert|38|mph}}, dibandingkan kecepatan maksimum jalur lintas utama Midland Railway {{convert|25|mph}} untuk KA barang yang tidak dipasangi abar kontinu.<ref>Railway Magazine March 1952 p. 210</ref> Tahun 1952, 14% dari seluruh armada gerbong terbuka, 55% gerbong tertutup, dan 80% gerbong ternah sudah diperlengkapi abar vakum.<ref>Railway Magazine March 1952 p. 145</ref>
 
Pada saat awal beroperasinya [[lokomotif diesel]], tender abar juga dipasang pada lokomotif untuk meningkatkan daya abar saat menarik KA tanpa abar kontinu. Tender ini sangat rendah sehingga masinis dapat melihat jalur dan persinyalan yang diperagakan jika tendernya berada di depan lokomotif, kadang kala.
 
Hingga 1878 telah dipatenkan 105 sistem abar kereta api di banyak negara, meski kebanyakan tidak diadopsi oleh perusahaan KA.<ref>http://nla.gov.au/nla.news-article5947355#reloadOnBack</ref>
 
== Abar kontinu ==
Saat muat kereta, kelandaian, dan kelajuan bertambah, sistem abar menjadi masalah penting. Pada akhir abad ke-19, abar kontinu sudah mulai bermunculan, lebih efektif. Jenis awal dari abar kontinu adalah abar rantai<ref>{{cite web|url=http://www.lnwrs.org.uk/Glossary/glossarycc.php|title=(Cc) Glossary for the LNWR Society<!-- Bot generated title -->|website=lnwrs.org.uk|archiveurl=https://web.archive.org/web/20160817090320/http://lnwrs.org.uk/Glossary/glossarycc.php|archivedate=17 August 2016|accessdate=16 March 2018|url-status=dead}}</ref> yang mempergunakan rantai yang dipasang mengikuti panjang rangkaian untuk mengoperasikan abar di seluruh sarana kereta secara simultan.
 
Abar ini kemudian digantikan dengan abar vakum dan udara. Abar ini menggunakan selang abar yang menghubungkan seluruh gerbong yang terangkai, sehingga masinis dapat menghentikan kereta api secara serentak.
 
Abar kontinu dapat sederhana maupun otomatis, perbedaan esensialnya adalah ketika rangkaian dibagi. Pada sistem yang sederhana, tekanan sangat dibutuhkan untuk mengerem, dan seluruh daya remnya bisa hilang jika selangnya bocor karena masalah apapun. Abar nonotomatis sederhana menjadi tidak berguna jika terjadi suatu masalah, misalnya pada [[kecelakaan kereta api Armagh]].
 
Di sisi lain, abar otomatis dapat menggunakan tekanan udara atau vakum untuk melepas ikatan abar terhadap tangki yang dipasang di tiap sarana, yang akan mengikat abar jika tekanan/vakumnya hilang di pipa abar. Abar otomatis ini tergolong "''failsafe''", meski penutupan selang abar yang tidak sempurna dapat menyebabkan kecelakaan seperti [[kecelakaan Gare de Lyon]].
 
Abar standar [[Westinghouse Air Brake Company|Westinghouse Air Brake]] juga memiliki tambahan tiga katup, dan tangki abar lokal di tiap sarana yang memungkinkan abar dapat terikat sepenuhnya dengan sedikit penurunan tekanan udara, sehingga mengurangi waktu yang diperlukan untuk melepaskan abar karena tidak semua tekanan udara dilepas ke atmosfer bebas.
 
Abar nonotomatis masih memegang peranan penting dalam sarana penggerak maupun tak berpenggerak, karena abar ini dapat digunakan untuk mengontrol seluruh rangkaian KA tanpa harus mengikat abar otomatis.
 
== Jenis ==
 
=== Udara dan vakum ===
[[Berkas:Duplex_Brake_Gauge.jpg|ka|jmpl|Manometer{{Pranala mati|date=Januari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} tekanan angin abar udara tekan. Jarum sebelah kiri menunjukkan tangki utama sedangkan yang kanan menunjukkan silinder abar. Tekanan diukur menggunakan satuan [[Bar (satuan)|bar]].]]
Pada awal-awal abad ke-20, banyak perusahaan KA Britania Raya mempergunakan abar vakum daripada abar udara tekan yang telah banyak digunakan di belahan dunia. Keuntungannya, vakum dapat dibuat dari ejektor uap tanpa memerlukan bagian yang bergerak (dan dapat diberdayakan menggunakan uap [[Lokomotif uap|lokomotif]]), sedangkan abar udara tekan memerlukan [[Kompresor udara|kompresor]].
 
Akan tetapi, abar udara dapat lebih efektif daripada abar vakum bergantung pada ukuran silinder abarnya. Kompresor angin untuk abar udara tekan biasanya mampu menghasilkan tekanan udara sebesar {{convert|90|psi|kPa bar|abbr=on|lk=on}}, daripada {{convert|15|psi|kPa bar|abbr=on}}pada abar vakum. Dengan sistem vakum ini, tekanan maksimum pembandingnya adalah tekanan atmosfer ({{convert|14.7|psi|kPa bar|abbr=on|disp=or}} di permukaan laut, akan berkurang seiring bertambahnya ketinggian). Sehingga, sistem abar udara tekan dapat menggunakan silinder abar berukuran kecil daripada sistem vakum untuk menghasilkan gaya pengereman yang sama. Keuntungan abar udara tekan adalah keandalannya pada altitudo yang tinggi seperti di Peru dan Swiss meski saat ini abar vakum banyak digunakan pada jalur cabang. Keefektifan abar udara tekan dan afkirnya digunakan lokomotif uap telah membuktikan bahwa abar udara tekan lebih disukai; meski, abar vakum masih digunakan di [[Transportasi rel di India|India]], [[Transportasi rel di Argentina|Argentina]], dan [[Transportasi rel di Afrika Selatan|Afrika Selatan]], tetapi mulai ditinggalkan.{{Citation needed|date=September 2012}}
 
=== Pengembangan abar udara tekan ===
Salah satu<!--modern; has been around for a long time--> pengembangan dari abar udara tekan adalah adanya selang angin sekunder (tangki utama) di sepanjang kereta untuk mengisi ulang tangki udara di tiap sarana. Tekanan udara ini juga digunakan untuk mengoperasikan alat bongkar muat curah pada gerbong kricak atau gerbong batu bara. Pada [[kereta penumpang]], pipa tangki utama juga digunakan untuk memasok udara untuk mengoperasikan pintu dan suspensi angin.
 
=== Abar elektropneumatik ===
[[Berkas:Davis_Metcalfe_Brake_Handle.jpg|al=British{{Pranala mati|date=Januari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} electric train driver's brake|ka|jmpl|Tuas abar]]
Abar yang memiliki performa tinggi ini memiliki "pipa tangki utama" yang digunakan untuk memasok udara pada seluruh tangki abar pada kereta api, dengan katup rem dikendalikan secara elektrik dengan rangkaian kontrol tiga kabel. Hal ini menyediakan tingkat pengereman dari empat hingga tujuh, bergantung kelas keretanya. Hal ini juga memungkinkan pengikatan rem secara cepat, karena sinyal-sinyal listrik ini dapat dialirkan secara cepat ke seluruh sarana kereta api, dan perubahan tekanan anginnya mampu mengaktifkan abar sementara pada sistem konvensional dapat memerlukan waktu beberapa detik atau puluhan detik agar dapat mengikat sempurna sampai kereta paling belakang. Sistem ini tidak digunakan dalam KA barang karena biayanya yang mahal. {{Citation needed|date=September 2012}}
 
=== Abar pneumatik terkontrol elektronik ===
Abar ECP (''electronically controlled pneumatic'') dikembangkan pada akhir abad ke-20 untuk menjawab tantangan kebutuhan KA barang yang sangat panjang dan berat, dan merupakan pengembangan dari abar elektropneiumatik dengan tambahan kontrol. Tambahannya, informasi terkait operasi abar di tiap kereta/gerbong akan ditampilkan di meja layan masinis.
 
Dengan abar ECP, rangkaian daya dan kontrolnya dipasang di seluruh rangkaian kereta mulai depan hingga belakang. Sinyal kontrol elektrik akan dibangkitkan secara cepat dan efektif, tidak seperti abar udara tekan yang memerlukan waktu karena adanya resistensi aliran udara pada pipa, sehingga abar di seluruh rangkaian dapat diikat secara serentak, atau dari belakang ke depan daripada dari depan ke belakang. Hal ini mencegah agar gerbong yang di belakang tidak menyundul gerbong di depannya serta mampu mengurangi jarak penghentian dan keausan komponen.
 
Ada dua merek abar ECP di Amerika Utara, satunya produksi [[New York Air Brake]] dan lainnya [[Wabtec]]. Kedua-duanya dapat saling ditukar.
 
== Reversibilitas ==
Sambungan abar antarsarana dapat disederhanakan bila sarana tersebut selalu berjalan searah. Pengecualian dapat terjadi pada lokomotif yang diputar pada [[pemutar rel]] atau [[segitiga pembalik]].
 
Pada jalur KA [[Fortescue Metals Group|Fortescue]] yang dibuka pada 2008, sarana beroperasi dalam satu set, tetapi dapat dibalik menggunakan [[petak balon]] saat tiba di dermaga. Konektor [[Rem pneumatik terkontrol elektronik|ECP]] hanya berada di satu sisi dan tidak bisa dibalik.
 
== Referensi ==
{{reflist}}
 
== Sumber ==
 
* [[British Transport Commission]], London (1957:142). ''Handbook for Railway Steam Locomotive Enginemen''
 
== Daftar pustaka ==
* Marsh, G.H. and Sharpe, A.C. The development of railway brakes. Part 1 1730-1880 ''Railway engineering journal'' 2(1) 1973, 46-53; Part 2 1880-1940 ''Railway engineering journal'' 2(2) 1973, 32-42
* Winship, I.R. The acceptance of continuous brakes on railways in Britain ''[[History of technology]]'' 11 1986, 209-248. Covering developments from about 1850 to 1900.
 
Baris 155 ⟶ 195:
* [https://web.archive.org/web/20111121153747/http://www.railway-technical.com/brake1.shtml#EarlyBrakeSystems RailTech]
 
[[CategoryKategori:Sistem rem]]
[[CategoryKategori:Sejarah perkeretaapian]]