Sel surya: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Add 1 book for Wikipedia:Pemastian (20210309)) #IABot (v2.0.8) (GreenC bot |
menambahkan pranala dalam |
||
(17 revisi perantara oleh 12 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Solar Taxi Q Cell.JPG|jmpl|ka|250px|Taksi tenaga surya sedang dipamerkan oleh pembuatnya pada [[KTT Perubahan Iklim di Nusa Dua Bali]] ]]
'''Sel surya''' atau '''sel fotovoltaik''', adalah sebuah alat [[semikonduktor]] yang terdiri dari sebuah wilayah-besar [[diode|dioda]] [[
Sel surya memiliki banyak aplikasi. Mereka terutama cocok untuk digunakan bila tenaga listrik dari [[grid]] tidak tersedia, seperti di wilayah terpencil, [[satelit]] pengorbit [[bumi]], [[kalkulator]] genggam, pompa air, dll. Sel surya (dalam bentuk modul atau [[panel surya]]) dapat dipasang di atap gedung di mana mereka berhubungan dengan [[inverter]] ke grid listrik dalam sebuah pengaturan [[net metering]].
Baris 11:
=== Sel, panel, modul, dan sistem ===
[[Berkas:From a solar cell to a PV system.svg|jmpl|Dari sel surya ke sistem PV. Diagram komponen yang mungkin dari [[sistem fotovoltaik]]]]
Beberapa sel surya dalam kelompok terpadu, semuanya berorientasi dalam satu bidang, membentuk [[Panel surya|panel atau modul fotovoltaik surya]]. Modul [[fotovoltaik]] sering
{| class="wikitable"
|+Harga sistem PV tipikal pada 2013 di negara-negara tertentu ($/W)
Baris 56:
| colspan="9" |Sumber: ''[[Badan Energi Internasional|IEA]] - Roadmap Teknologi: Laporan Energi Fotovoltaik Solar'', edisi 2014<ref name="IEA-roadmap-PV-2014">{{Cite web|url=http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf|title=Technology Roadmap: Solar Photovoltaic Energy|year=2014|publisher=IEA|archive-url=https://www.webcitation.org/6T92GIRhW?url=http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf|archive-date=7 October 2014|dead-url=no|access-date=7 October 2014}}</ref>{{Refpage|15}} Catatan: ''[[Kementerian Energi Amerika Serikat|DOE]] - Tren Penentuan Harga Sistem Fotovoltaik'' melaporkan harga yang lebih rendah untuk AS<ref name="sunshot-2014">{{Cite web|url=http://www.nrel.gov/docs/fy14osti/62558.pdf|title=Photovoltaic System Pricing Trends – Historical, Recent, and Near-Term Projections, 2014 Edition|date=22 September 2014|publisher=NREL|page=4|archive-url=https://www.webcitation.org/6XOoaSCpl?url=http://www.nrel.gov/docs/fy14osti/62558.pdf|archive-date=29 March 2015|dead-url=no}}</ref>
|}
=== Aplikasi di Kendaraan ===
[[File:GM_Sunraycer.JPG|thumb|Mobil [[Sunraycer]] yang dikembangkan oleh GM (General Motors)]]
Penggunaan sel surya sebagai sumber energi alternatif dalam kendaraan semakin berkembang. Kendaraan listrik yang menggunakan energi surya dan/atau sinar matahari disebut mobil surya. Mobil ini menggunakan panel surya untuk mengubah cahaya menjadi energi listrik yang disimpan dalam baterai. Beberapa faktor seperti suhu, sifat material, kondisi cuaca, sinar matahari, dan lainnya mempengaruhi daya yang dihasilkan oleh sel surya.<ref>{{Cite journal |last1=Al-Ezzi |first1=Athil S. |last2=Ansari |first2=Mohamed Nainar M. |date=2022-07-08 |title=Photovoltaic Solar Cells: A Review |journal=Applied System Innovation |language=en |volume=5 |issue=4 |pages=67 |doi=10.3390/asi5040067 |issn=2571-5577 |doi-access=free }}</ref>
Penggunaan sel surya dalam kendaraan mulai muncul sekitar pertengahan abad ke-20. Untuk meningkatkan publisitas dan kesadaran tentang transportasi berenergi surya, pada tahun 1987 Hans Tholstrup mengadakan World Solar Challenge, sebuah perlombaan sejauh 3000 km melintasi belantara Australia, yang diikuti oleh peserta dari industri dan universitas terkemuka di seluruh dunia.<ref name=":03">{{Cite journal |last1=Chaturvedi |first1=Abhinya |last2=Kushwaha |first2=Kirti |last3=Kashyap |first3=Parul |last4=Navani |first4=J.P. |date=April–June 2015 |title=Solar Powered Vehicle |journal=International Journal of Electrical and Electronics Research |volume=3 |issue=2 |pages=270–273 |url=https://www.academia.edu/30354666}}</ref> General Motors berhasil memenangkan acara tersebut dengan mobil mereka, Sunraycer, yang mencapai kecepatan lebih dari 40 mph dan memiliki keunggulan yang signifikan.<ref name=":03" /> Sebenarnya, mobil tenaga surya adalah salah satu jenis kendaraan energi alternatif tertua.<ref>{{Cite conference |location=Capri, Italy |last=Connors |first=John |date=21-23 Mei 2007 |title=Tentang Kendaraan Tenaga Surya dan Manfaat Teknologi Ini |book-title=Konferensi Internasional 2007 tentang Listrik Bersih |pages=700–705 |doi=10.1109/ICCEP.2007.384287}}</ref>
== Sejarah ==
Baris 70 ⟶ 76:
=== Aplikasi luar angkasa ===
Sel surya pertama kali digunakan dalam aplikasi yang menonjol ketika mereka diusulkan dan diterbangkan pada satelit [[Vanguardisme|Vanguard]] pada tahun 1958, sebagai sumber daya alternatif ke sumber daya [[Sel primer|baterai utama]]. Dengan menambahkan sel ke bagian satelit, waktu misi dapat diperpanjang tanpa perubahan besar pada pesawat ruang angkasa atau sistem dayanya. Pada tahun 1959 Amerika Serikat meluncurkan [[Penjelajah 6|Explorer 6]], menampilkan jajaran surya besar berbentuk sayap, yang menjadi fitur umum pada satelit tersebut. Jajaran ini terdiri dari 9600 [[H. Leslie (Les) Hoffman|sel surya Hoffman]].
Pada 1960-an, sel surya adalah sumber daya utama untuk sebagian besar satelit yang mengorbit Bumi dan sejumlah wahana antariksa di tata surya, karena menawarkan rasio [[Rasio daya terhadap berat|daya-terhadap-berat]] yang terbaik. Namun, keberhasilan ini dimungkinkan karena dalam aplikasi luar angkasa, biaya sistem daya bisa begitu tinggi, karena pengguna ruang memiliki sedikit opsi daya lain, dan kesediaan membayar untuk sel surya terbaik. Pasar tenaga luar angkasa mendorong pengembangan efisiensi yang lebih tinggi dalam sel surya hingga program [[Yayasan Sains Nasional]] "Penelitian yang Diterapkan untuk Kebutuhan Nasional" mulai mendorong pengembangan sel surya untuk aplikasi terestrial.
Pada awal 1990-an teknologi yang digunakan untuk sel surya luar angkasa membelok dari teknologi [[silikon]] yang digunakan untuk panel terestrial, dengan aplikasi pesawat ruang angkasa bergeser ke bahan semikonduktor III-V berbasis [[galium arsenida]], yang kemudian berkembang menjadi [[sel fotovoltaik multipertemuan]] III-V modern yang digunakan di pesawat luar angkasa.
=== Penurunan biaya ===
Pemutakhiran terjadi secara bertahap selama 1960-an. Ini juga merupakan alasan bahwa biaya sel surya begitu tinggi, karena pengguna bersedia membayar untuk sel terbaik, tanpa meninggalkan alasan untuk berinvestasi dalam solusi yang lebih murah dan kurang efisien. Harga sebagian besar ditentukan oleh industri semikonduktor; perpindahan tren menuju [[sirkuit terpadu]] pada 1960-an menyebabkan ketersediaan [[Boule (kristal)|boule]] yang lebih besar dengan harga relatif lebih rendah. Ketika harganya turun, harga sel yang dihasilkan juga. Efek ini menurunkan biaya sel pada tahun 1971 menjadi sekitar $ 100 per watt.{{Sfn|Perlin|1999|p=50}}
Pada akhir 1969 Elliot Berman bergabung dengan gugus tugas [[Exxon]] yang sedang mencari proyek 30 tahun di masa depan dan pada April 1973 ia mendirikan Solar Power Corporation, anak perusahaan yang sepenuhnya dimiliki [[ExxonMobil|Exxon]] pada waktu itu.{{Sfn|Perlin|1999|p=53}}<ref name="williams 2005">{{Cite book|first=Neville|last=Williams|title=Chasing the Sun: Solar Adventures Around the World|url=https://archive.org/details/chasingsunsolara0000will|year=2005|publisher=[[New Society Publishers]]|page=[https://archive.org/details/chasingsunsolara0000will/page/84 84]|isbn=9781550923124}}</ref><ref name="jones">{{Cite book|first=Geoffrey|last=Jones|first2=Loubna|last2=Bouamane|title="Power from Sunshine": A Business History of Solar Energy|url=http://www.hbs.edu/faculty/Publication%20Files/12-105.pdf|year=2012|publisher=[[Harvard Business School]]|pages=22–23}}</ref> Kelompok ini menyimpulkan bahwa daya listrik akan jauh lebih mahal pada tahun 2000, dan merasa bahwa kenaikan harga ini akan membuat sumber energi alternatif lebih menarik. Dia melakukan studi pasar dan menyimpulkan bahwa [[harga per watt]] sekitar $ 20/watt akan menciptakan permintaan yang signifikan.{{Sfn|Perlin|1999|p=53}} Tim menghilangkan langkah-langkah memoles wafer dan melapisinya dengan lapisan anti-reflektif, dengan mengandalkan permukaan wafer gergajian kasar. Tim juga mengganti bahan-bahan mahal dan kabel tangan yang digunakan dalam aplikasi luar angkasa dengan [[papan sirkuit cetak]] di bagian belakang, plastik [[Polimer akrilat|akrilik]] di bagian depan, dan lem [[Silikone|silikon di]] antara keduanya, "pot" sel.{{Sfn|Perlin|1999|p=54}} Sel surya dapat dibuat menggunakan bahan buangan dari pasar elektronik. Pada tahun 1973 mereka mengumumkan produk, dan SPC meyakinkan [[Sinyal Tideland|Tideland Signal]] untuk menggunakan panelnya untuk memberi daya pada [[Boya|pelampung]] navigasi, awalnya untuk US Coast Guard.<ref name="williams 2005" />
=== Penelitian dan Produksi Industri ===
Penelitian mengenai energi surya untuk aplikasi di daratan menjadi penting melalui Divisi Penelitian dan Pengembangan Energi Surya Lanjutan dari [[National Science Foundation]] (NSF) Amerika Serikat dalam program "Penelitian yang Diterapkan untuk Kebutuhan Nasional" dari tahun 1969 hingga 1977,<ref>[https://www.nsf.gov/about/history/nsf50/nsf8816.jsp The National Science Foundation: A Brief History], Bab IV, NSF 88-16, 15 Juli 1994 (diakses 20 Juni 2015)</ref> yang mendanai penelitian untuk mengembangkan energi surya dalam sistem listrik di daratan. Pada tahun 1973, dalam konferensi "Cherry Hill Conference", ditetapkan tujuan teknologi yang harus dicapai dan merencanakan proyek ambisius untuk mencapainya, sehingga memulai program penelitian terapan yang berlangsung selama beberapa dekade.<ref>{{cite conference |author=Herwig, Lloyd O. |book-title=National center for photovoltaics (NCPV) 15th program review meeting |volume=462 |page=785 |doi=10.1063/1.58015 |bibcode=1999AIPC..462..785H |title=Cherry Hill revisited: Background events and photovoltaic technology status|year=1999}}</ref> Program ini kemudian dikelola oleh [[Energy Research and Development Administration]] (ERDA),<ref>{{cite conference |author1=Deyo, J. N. |author2=Brandhorst, H. W. Jr. |author3=Forestieri, A. F. |title=Status of the ERDA/NASA photovoltaic tests and applications project |url=https://ntrs.nasa.gov/search.jsp?R=19770006594 |conference=12th IEEE Photovoltaic Specialists Conf. |date=15–18 Nov 1976}}</ref> yang kemudian digabungkan ke dalam [[Departemen Energi Amerika Serikat]].
Setelah [[krisis minyak 1973]], perusahaan minyak menggunakan keuntungan yang lebih tinggi untuk memulai atau membeli perusahaan energi surya, sehingga menjadi produsen terbesar selama beberapa dekade. Perusahaan-perusahaan seperti Exxon, ARCO, Shell, Amoco (kemudian dibeli oleh BP), dan Mobil memiliki divisi energi surya yang besar pada tahun 1970-an dan 1980-an. Perusahaan-perusahaan teknologi juga turut berpartisipasi, antara lain [[General Electric]], [[Motorola]], [[IBM]], [[Tyco]], dan [[RCA]].<ref name="hoanggiangsolar">{{cite web |title=Sửa máy nước nóng năng lượng |url=https://hoanggiangsolar.com/sua-may-nuoc-nong-nang-luong-mat-troi/ |website=hoanggiangsolar.com |access-date=28 Juni 2023}}</ref><ref name="Information1979">{{cite magazine|title=The multinational connections-who does what where|magazine=New Scientist|volume=84|issue=1177|url={{google books |plainurl=y |id=x3w5ZfGUS_0C}}|date=18 Oktober 1979 |publisher=Reed Business Information|issn=0262-4079}}</ref>
== Pengurangan biaya dan pertumbuhan eksponensial ==
{{Main|Pertumbuhan fotovoltaik}}
[[Berkas:CO2 mitigation and price.jpg|jmpl|Volume energi [[Sel surya silikon|sel surya Si]] dan minyak yang dikumpulkan oleh manusia per dolar, dan intensitas karbon dari beberapa teknologi pembangkit listrik utama.<ref name=":1">{{Cite journal|last=Yu|first=Peng|last2=Wu|first2=Jiang|last3=Liu|first3=Shenting|last4=Xiong|first4=Jie|last5=Jagadish|first5=Chennupati|last6=Wang|first6=Zhiming M.|date=2016-12-01|title=Design and fabrication of silicon nanowires towards efficient solar cells|journal=Nano Today|volume=11|issue=6|pages=704–737|doi=10.1016/j.nantod.2016.10.001}}</ref>]]
Pemutakhiran teknologi pemrosesan lebih lanjut mengurangi biaya produksi hingga di bawah $ 1 per watt, dengan biaya grosir jauh di bawah $ 2. [[
Ketika industri semikonduktor
Selama tahun 1990-an, sel [[polisilikon]] ("poli") menjadi semakin populer. Sel-sel ini menawarkan efisiensi yang lebih rendah dibandingkan dengan monosilikon ("mono"),
PV surya tumbuh tercepat di Asia, dengan Tiongkok dan Jepang saat ini menyumbang setengah dari [[Pertumbuhan fotovoltaik|penyebaran di seluruh dunia]].<ref name="iea-pvps-snapshot-1992-2014">{{Cite web|url=http://www.iea-pvps.org/fileadmin/dam/public/report/technical/PVPS_report_-_A_Snapshot_of_Global_PV_-_1992-2014.pdf|title=Snapshot of Global PV 1992–2014|date=30 March 2015|publisher=International Energy Agency — Photovoltaic Power Systems Programme|archive-url=https://www.webcitation.org/6XPpb1fai?url=http://www.iea-pvps.org/index.php?id=92&eID=dam_frontend_push&docID=2430|archive-date=30 March 2015|dead-url=no}}</ref> Kapasitas PV terpasang global mencapai setidaknya 301 gigawatt pada 2016, dan tumbuh untuk memasok 1,3% daya global pada 2016.<ref>{{Cite web|url=http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html|title=Solar energy – Renewable energy – Statistical Review of World Energy – Energy economics – BP|website=bp.com}}</ref>
Penurunan biaya dianggap sebagai salah satu faktor terbesar dalam pesatnya pertumbuhan energi terbarukan, dengan turunnya biaya listrik fotovoltaik surya sebesar ~85% antara tahun 2010 hingga 2021.<ref>{{cite web |last1=Jaeger |first1=Joel |title=Explaining the Exponential Growth of Renewable Energy |url=https://www.wri.org/insights/growth-renewable-energy-sector-explained |access-date=2021-11-08|language=en |date=20 September 2021}}</ref> Pada tahun 2019, sel surya menyumbang ~3% dari pembangkit listrik dunia.<ref name="techrev">{{cite web |title=Solar panels are a pain to recycle. These companies are trying to fix that. |url=https://www.technologyreview.com/2021/08/19/1032215/solar-panels-recycling/ |website=MIT Technology Review |access-date=2021-11-08|language=en}}</ref>
== Material ==
Baris 110 ⟶ 122:
[[Wafer epitaxial|Wafer epitaksial]] silikon kristalin dapat ditumbuhkan pada wafer "benih" silikon monokristalin oleh [[Pengendapan uap kimia|deposisi uap kimia]] (CVD), dan kemudian terlepas sebagai wafer yang menopang diri sendiri dengan ketebalan standar (misalnya, 250 μm) yang dapat dimanipulasi dengan tangan, dan secara langsung diganti dengan sel wafer yang dipotong dari ingot silikon monokristalin. Sel surya yang dibuat dengan teknik "tanpa [[Gergaji|kerf]]" ini dapat memiliki efisiensi mendekati sel-sel ''wafer-cut'', tetapi dengan biaya yang jauh lebih rendah jika CVD dapat dilakukan pada [[tekanan atmosfer]] dalam proses inline dengan ''throughput'' yang tinggi.<ref name="NexWafe">{{Cite web|url=https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2015/nexwafe|title=20% Efficient Solar Cell on EpiWafer|last=Janz|first=Stefan|last2=Reber|first2=Stefan|date=14 September 2015|publisher=[[Fraunhofer Institute for Applied Solid State Physics|Fraunhofer ISE]]|access-date=15 October 2015}}</ref><ref name="DrießenAmiri2016">{{Cite journal|last=Drießen|first=Marion|last2=Amiri|first2=Diana|last3=Milenkovic|first3=Nena|last4=Steinhauser|first4=Bernd|last5=Lindekugel|first5=Stefan|last6=Benick|first6=Jan|last7=Reber|first7=Stefan|last8=Janz|first8=Stefan|year=2016|title=Solar Cells with 20% Efficiency and Lifetime Evaluation of Epitaxial Wafers|journal=Energy Procedia|volume=92|pages=785–790|doi=10.1016/j.egypro.2016.07.069|issn=1876-6102}}</ref> Permukaan wafer epitaksial mungkin bertekstur untuk meningkatkan penyerapan cahaya.<ref name="pyramid">{{Cite journal|last=Gaucher|first=Alexandre|last2=Cattoni|first2=Andrea|last3=Dupuis|first3=Christophe|last4=Chen|first4=Wanghua|last5=Cariou|first5=Romain|last6=Foldyna|first6=Martin|last7=Lalouat|first7=Loı̈c|last8=Drouard|first8=Emmanuel|last9=Seassal|first9=Christian|year=2016|title=Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping|journal=Nano Letters|volume=16|issue=9|pages=5358–64|bibcode=2016NanoL..16.5358G|doi=10.1021/acs.nanolett.6b01240|pmid=27525513}}</ref><ref name="ChenCariou2016">{{Cite journal|last=Chen|first=Wanghua|last2=Cariou|first2=Romain|last3=Foldyna|first3=Martin|last4=Depauw|first4=Valerie|last5=Trompoukis|first5=Christos|last6=Drouard|first6=Emmanuel|last7=Lalouat|first7=Loic|last8=Harouri|first8=Abdelmounaim|last9=Liu|first9=Jia|year=2016|title=Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells|deadurl=Cabarrocas|journal=Journal of Physics D: Applied Physics|volume=49|issue=12|pages=125603|bibcode=2016JPhD...49l5603C|doi=10.1088/0022-3727/49/12/125603|issn=0022-3727}}</ref>
Pada Juni 2015, dilaporkan bahwa sel surya [[Heterjunction|heterojunction]] yang ditumbuhkan secara epitaksial pada wafer silikon tipe-n monokristalin telah mencapai efisiensi 22,5% dari total luas sel 243,4
==== Silikon polikristalin ====
Baris 116 ⟶ 128:
==== Silikon pita ====
[[Silikon pita]] adalah jenis silikon polikristalin — dibentuk dengan menarik film tipis rata dari silikon [[Pencairan|cair]] dan menghasilkan struktur polikristalin. Sel-sel ini lebih murah daripada multi-Si, karena pengurangan besar dalam limbah silikon, karena pendekatan ini tidak memerlukan [[Gergaji|penggergajian]] dari [[ingot]].<ref>{{Cite book|url=http://www.ece.gatech.edu/research/UCEP/papers/3world/STRING%20RIBBON%20SILICON%20SOLAR%20CELLS%20WITH%2017.8%25%20EFFICIENCY.pdf|title=String ribbon silicon solar cells with 17.8% efficiency|last=Kim, D.S.|date=18 May 2003|work=Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003|isbn=978-4-9901816-0-4|volume=2|pages=1293–1296|display-authors=etal|access-date=2020-05-27|archive-date=2016-04-07|archive-url=https://web.archive.org/web/20160407123021/http://www2.ece.gatech.edu/research/UCEP/papers/3world/STRING%20RIBBON%20SILICON%20SOLAR%20CELLS%20WITH%2017.8%25%20EFFICIENCY.pdf|dead-url=yes}}</ref> Namun, sel ini juga kurang efisien.
==== Silikon mono-seperti-multi (MLM) ====
Baris 146 ⟶ 158:
Wafer [[silikon polikristalin]] dibuat dengan menggergaji ingot silikon cetak blok menjadi wafer dengan ketebalan 180 hingga 350 mikrometer. Wafer biasanya berbentuk [[Semikonduktor tipe-P|tipe-p]]-terdoping. Difusi permukaan dopan [[Semikonduktor tipe-N|tipe-n]] dilakukan di sisi depan wafer. Ini membentuk pertemuan p-n beberapa ratus nanometer di bawah permukaan.
[[Lapisan antipantul
Kontak logam area penuh dibuat di permukaan belakang, dan kontak logam seperti kisi yang terbuat dari "jari" halus dan "batang bus" yang lebih besar dicetak dengan layar ke permukaan depan menggunakan pasta [[perak]]. Ini adalah evolusi dari apa yang disebut proses "basah" untuk penerapan elektroda, pertama kali dijelaskan dalam paten AS yang diajukan pada tahun 1981 oleh [[Bayer|Bayer AG]].<ref>Fitzky, Hans G. and Ebneth, Harold (24 May 1983) {{US patent|4385102}}, "Large-area photovoltaic cell"</ref> Kontak belakang dibentuk dengan sablon pasta logam, biasanya aluminium. Biasanya kontak ini menutupi seluruh bagian belakang, meskipun beberapa desain menggunakan pola kisi. Pasta tersebut kemudian ditembakkan pada beberapa ratus derajat celcius untuk membentuk elektroda logam dalam [[Kontak Ohmik|kontak ohmik]] dengan silikon. Beberapa perusahaan menggunakan langkah pelapisan listrik tambahan untuk meningkatkan efisiensi. Setelah kontak logam dibuat, sel surya dihubungkan dengan kabel pipih atau pita logam, dan dirangkai menjadi [[Fotovoltaik|modul]] atau "panel surya". Panel surya memiliki selembar [[Kaca tempered|kaca temper]] di bagian depan, dan enkapsulasi [[polimer]] di bagian belakang.
Baris 174 ⟶ 186:
== Pranala luar ==
* [http://home.att.net/~africantech/solar/amorphous/amorphous1.htm Use of solar cells in] {{Webarchive|url=https://web.archive.org/web/20050828233349/http://home.att.net/~africantech/solar/amorphous/amorphous1.htm |date=2005-08-28 }} [[Kenya]] and [[Uganda]], in [[Africa]]
* Pennicott, Katie, "''[http://physicsweb.org/article/news/5/12/2 Solar cell edges towards endless energy]''". [[7 December]] [[2001]]. PhysicsWeb.
* [http://dcwww.epfl.ch/lpi/solarcellE.html Dye Sensitized Solar Cells] {{Webarchive|url=https://web.archive.org/web/20041012055205/http://dcwww.epfl.ch/lpi/solarcellE.html |date=2004-10-12 }} (DYSC) based on Nanocrystalline Oxide Semiconductor Films
* News searching: [http://news.google.com/news?hl=da&q=%22Solar+Cell%22 Solar Cell], [http://news.google.com/news?hl=da&q=Photovoltaic Photovoltaic]
* [http://www.atse.org.au/index.php?sectionid=391 Historical: Photovoltaic Solar Energy Conversion: An Update]
* [http://www.lbl.gov/msd/PIs/Walukiewicz/02/02_8_Full_Solar_Spectrum.html Wladek Walukiewicz, Materials Sciences Division, Berkeley Lab.: Full Solar Spectrum Photovoltaic Materials Identified.] {{Webarchive|url=https://web.archive.org/web/20080702225614/http://www.lbl.gov/msd/PIs/Walukiewicz/02/02_8_Full_Solar_Spectrum.html |date=2008-07-02 }} Quote: "... Maximum, theoretically predicted efficiencies increase to 50%, 56%, and 72% for stacks of 2, 3, and 36 junctions with appropriately optimized energy gaps, respectively...."
* [http://news.cnet.com/investor/news/newsitem/0-9900-1028-21199489-0.html CNET: 5/12/03 SunPower Announces World's Most Efficient, Low-Cost Silicon Solar Cell] Quote: "...[http://www.nrel.gov/ The National Renewable Energy Laboratory (NREL)] has verified 20.4 percent conversion efficiency for the A-300...."
* [http://www.sunpowercorp.com/html/Products/Datasheets/A-300/A-300.pdf SunPower A-300 (pdf)] {{Webarchive|url=https://web.archive.org/web/20081011153240/http://www.sunpowercorp.com/html/Products/Datasheets/A-300/A-300.pdf |date=2008-10-11 }}, [http://www.sunpowercorp.com/ SunPower]
* [http://www.sciam.com/article.cfm?chanID=sa003&articleID=0004C094-02CC-1CD0-B4A8809EC588EEDF][[29 March]] [[2002]], Scientists Create New Solar Cell Quote: "...semiconducting plastic material known as P3HT... 1.7 percent for sunlight..."
* [http://www.newscientist.com/news/news.jsp?id=ns99993380][[15 February]] [[03]], 'Denim' solar panels to clothe future buildings Quote: "... Unlike conventional solar cells, the new, cheap material has no rigid silicon base..."
* [http://www.californiasolarco.com/power-systems-photo-gallery.html Residential Solar Power Systems - Photo Gallery]
* [http://www.sma-america.com/installations.html Examples of Photovoltaic Systems] {{Webarchive|url=https://web.archive.org/web/20050830064051/http://www.sma-america.com/installations.html |date=2005-08-30 }}
* [http://science.howstuffworks.com/solar-cell.htm How Solar Cells Work]
* [http://www.azonano.com/news.asp?newsID=548 azonano.com: Carbon Nanotube Structures Could Provide More Efficient Solar Power for Soldiers] {{Webarchive|url=https://web.archive.org/web/20070310221117/http://www.azonano.com/news.asp?newsID=548 |date=2007-03-10 }} [[28 February]] [[2005]]
* [http://www.newton.mec.edu/Brown/TE/HOT/TIMELINES/SOLAR/solar_timeline.html Solar energy timeline] {{Webarchive|url=https://web.archive.org/web/20060619104836/http://www.newton.mec.edu/Brown/TE/HOT/TIMELINES/SOLAR/solar_timeline.html |date=2006-06-19 }}
=== Yield data ===
Baris 199 ⟶ 211:
* [http://www.nrel.gov/buildings/pv/factsheets.html National Renewable Energy Laboratory (NREL): Photovoltaics for Buildings: PV Technology for the Home Factsheets]
* [http://www.nrel.gov/research/pv/docs/pvpaper.html 1993, National Renewable Energy Laboratory (NREL): Photovoltaics: Unlimited Electrical Energy From the Sun] BrokenLink
* [http://www.cefetba.br/fisica/NFL/PBCN/solar/solardeu.html#ideal Electrical models of solar cells] {{Webarchive|url=https://web.archive.org/web/20050924061719/http://www.cefetba.br/fisica/NFL/PBCN/solar/solardeu.html#ideal |date=2005-09-24 }}
=== Swakriya ===
Baris 215 ⟶ 227:
=== Indeks ===
* [[Open Directory Project]]: [http://www.dmoz.org/Business/Energy_and_Environment/Renewable/Solar/ Solar] {{Webarchive|url=https://web.archive.org/web/20050826051919/http://dmoz.org/Business/Energy_and_Environment/Renewable/Solar/ |date=2005-08-26 }}
=== Newsgroup ===
Baris 222 ⟶ 234:
=== Paten ===
* [http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r=1&f=G&l=50&s1=2402662.WKU.&OS=PN/2402662&RS=PN/2402662 US2402662] -- ''Light sensitive device''—R. S. Ohl
* [http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r=1&f=G&l=50&s1=1289369.WKU.&OS=PN/1289369&RS=PN/1289369 US1289369] -- ''Method of increasing the capacity of photosenitive electrical cells''
{{Authority control}}
{{Fotovoltaik}}
{{Sel galvani}}
[[Kategori:Komponen listrik]]▼
[[Kategori:Konversi energi]]
[[Kategori:Energi terbarukan]]
[[Kategori:
[[en:Balance of system]]
|