Sejarah matematika: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Mjbmrbot (bicara | kontrib)
Azmin1445 (bicara | kontrib)
Image suggestions feature: 1 image added.
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Suggested: add images to sections
 
(68 revisi perantara oleh 45 pengguna tidak ditampilkan)
Baris 1:
[[Berkas:Image-Al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala.jpg|thumbjmpl|Halaman dari ''[[Buku Ikhtisar Perhitungan dengan Penyelesaian dan Perimbangan]]'' karya [[Muḥammad bin Mūsā al-Khawārizmī]] (sekitar 820 Masehi)]]
 
[[Cabang]] pengkajian yang dikenal sebagai '''sejarah matematika''' adalah penyelidikan terhadap asal mula penemuan di dalam [[matematika]] dan sedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dipada masa silam.
 
Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis dari pengembangan matematika telah mengalami kemilau hanya di beberapa tempat. Tulisan matematika terkuno yang telah ditemukan adalah ''[[Plimpton 322]]'' ([[matematika Babilonia]] sekitar 1900 SM),<ref>J. Friberg, "Methods and traditions of Babylonian mathematics. Plimpton 322, Pythagorean triples, and the Babylonian triangle parameter equations", Historia Mathematica, 8, 1981, pp. 277—318.</ref> ''[[Lembaran Matematika Rhind]]'' (Matematika Mesir sekitar 2000-1800 SM)<ref>O. Neugebauer, "The Exact Sciences in Antiquity", Chap. IV "Egyptian Mathematics and Astronomy", 2nd ed., Dover, New York, 1969, pp. 71—96.</ref> dan ''[[Lembaran Matematika Moskwa]]'' ([[matematika Mesir]] sekitar 1890 SM). Semua tulisan itu membahas teorema yang umum dikenal sebagai [[teorema Pythagoras]], yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luas setelah aritmetika dasar dan geometri.
 
Sumbangan [[matematikawan Yunani]] memurnikan metode-metode (khususnya melalui pengenalan penalaran deduktif dan [[kekakuan matematika]] di dalam [[pembuktian matematika]]) dan perluasan pokok bahasan matematika.<ref>Sir Thomas L. Heath, ''A Manual of Greek Mathematics'', Dover, 1963, p. 1: "In the case of mathematics, it is the Greek contribution which it is most essential to know, for it was the Greeks who first made mathematics a science."</ref> Kata "matematika" itu sendiri diturunkan dari kata Yunani kuno, ''μάθημα'' (''mathema''), yang berarti "mata pelajaran".<ref>{{cite book|author=Heath|title=A Manual of Greek Mathematics|page=5}}</ref> [[Matematika Cina]] membuat sumbangan dini, termasuk [[notasi posisional]]. [[Sistem bilangan Hindu-Arab]] dan aturan penggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melalui kuliah pada milenium pertama Masehi di dalam [[matematika India]] dan telah diteruskan ke Barat melalui matematika Islam.<ref>Robert Kaplan, "The Nothing That Is: A Natural History of Zero", Allen Lane/The Penguin Press, London, 1999</ref><ref>"The ingenious method of expressing every possible number using a set of ten symbols (each symbol having a place value and an absolute value) emerged in India. The idea seems so simple nowadays that its significance and profound importance is no longer appreciated. Its simplicity lies in the way it facilitated calculation and placed arithmetic foremost amongst useful inventions. the importance of this invention is more readily appreciated when one considers that it was beyond the two greatest men of Antiquity, Archimedes and Apollonius." - Pierre Simon Laplace http://www-history.mcs.st-and.ac.uk/HistTopics/Indian_numerals.html</ref> [[Matematika Islam]], pada gilirannya, mengembangkan dan memperluas pengetahuan matematika ke peradaban ini.<ref>[[Adolf Yushkevich|A.P. Juschkewitsch]], "Geschichte der Mathematik im Mittelalter", Teubner, Leipzig, 1964</ref> Banyak naskah berbahasa Yunani dan Arab tentang matematika kemudian diterjemahkan ke dalam [[terjemahan Latin pada abad ke-12|bahasa Latin]], yang mengarah pada pengembangan matematika lebih jauh lagi di [[Abad Pertengahan|Zaman Pertengahan Eropa]].
 
Dari zaman kuno melalui Zaman Pertengahan, ledakan kreativitas matematika seringkalisering kali diikuti oleh abad-abad kemandekan. Bermula pada [[abad Renaisans]] [[Italia]] pada abad ke-16, pengembangan matematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada [[pertumbuhan eksponensial]] yang berlanjut hingga kini.
 
== Matematika prasejarah ==
[[Berkas:Plimpton 322.jpg|jmpl|Matematika prasejarah merujuk pada perkembangan matematika pada zaman kuno sebelum masehi. ]]
[[Berkas:Ishango bone.jpg|thumb|right|400px|[[Tulang Ishango]], dari 18000 20000 [[Sebelum Masehi|SM]].]]
Asal mula pemikiran matematika terletak di dalam konsep bilangan, besaran, dan bangun.<ref name="Boyer 1991 loc=Origins p. 3">{{Harv|Boyer|1991|loc="Origins" p. 3}}</ref> Pengkajian modern terhadap fosil binatang menunjukkan bahwa konsep ini tidak berlaku unik bagi manusia. Konsep ini mungkin juga menjadi bagian sehari-hari di dalam kawanan pemburu. Bahwa konsep bilangan berkembang tahap demi tahap seiring waktu adalah bukti di beberapa bahasa zaman kini mengawetkan perbedaan antara "satu", "dua", dan "banyak", tetapi bilangan yang lebih dari dua tidaklah demikian.<ref name="Boyer 1991 loc=Origins p. 3" />
 
Benda matematika tertua yang sudah diketahui adalah [[tulang Lebombo]], ditemukan di pegunungan Lebombo di [[Swaziland]] dan mungkin berasal dari tahun 35000 SM.<ref>http://mathworld.wolfram.com/LebomboBone.html</ref> Tulang ini berisi 29 torehan yang berbeda yang sengaja digoreskan pada tulang fibula baboon.<ref name="Diaspora">{{cite web | last = Williams | first = Scott W. | year = 2005 | url = http://www.math.buffalo.edu/mad/Ancient-Africa/lebombo.html | title = The Oldest Mathematical Object is in Swaziland | work = Mathematicians of the African Diaspora | publisher = SUNY Buffalo mathematics department | accessdate = 2006-05-06}}</ref> Terdapat bukti bahwa kaum perempuan biasa menghitung untuk mengingat [[siklus haid]] mereka; 28 sampai 30 goresan pada [[tulang]] atau [[batu]], diikuti dengan tanda yang berbeda.<ref>{{cite web | last = Kellermeier | first = John | year = 2003 | url = http://www.tacomacc.edu/home/jkellerm/Papers/Menses/Menses.htm | title = How Menstruation Created Mathematics | work = Ethnomathematics | publisher = Tacoma Community College | accessdate = 2006-05-06 | archive-date = 2005-12-23 | archive-url = https://web.archive.org/web/20051223112514/http://www.tacomacc.edu/home/jkellerm/Papers/Menses/Menses.htm | dead-url = yes }}</ref> Juga [[artefak]] [[prasejarah]] ditemukan di [[Afrika]] dan [[Prancis]], dari tahun 35.000 SM dan berumur 20.000 tahun,<ref>[http://www.math.buffalo.edu/mad/Ancient-Africa/ishango.html Benda matematika kuno]</ref> menunjukkan upaya dini untuk menghitung waktu.<ref>{{Cite web |url=http://etopia.sintlucas.be/3.14/Ishango_meeting/Mathematics_Africa.pdf |title=Matematika di Afrika bagian tengah sebelum pendudukan |access-date=2010-03-01 |archive-date=2012-02-07 |archive-url=https://web.archive.org/web/20120207040200/http://etopia.sintlucas.be/3.14/Ishango_meeting/Mathematics_Africa.pdf |dead-url=yes }}</ref>
Asal mula pemikiran matematika terletak di dalam konsep bilangan, besaran, dan bangun.<ref name="Boyer 1991 loc=Origins p. 3">{{Harv|Boyer|1991|loc="Origins" p. 3}}</ref> Pengkajian modern terhadap fosil binatang menunjukkan bahwa konsep ini tidak berlaku unik bagi manusia. Konsep ini mungkin juga menjadi bagian sehari-hari di dalam kawanan pemburu. Bahwa konsep bilangan berkembang tahap demi tahap seiring waktu adalah bukti di beberapa bahasa zaman kini mengawetkan perbedaan antara "satu", "dua", dan "banyak", tetapi bilangan yang lebih dari dua tidaklah demikian.<ref name="Boyer 1991 loc=Origins p. 3"/>
 
Benda matematika tertua yang sudah diketahui adalah [[tulang Lebombo]], ditemukan di pegunungan Lebombo di [[Swaziland]] dan mungkin berasal dari tahun 35000 SM.<ref>http://mathworld.wolfram.com/LebomboBone.html</ref> Tulang ini berisi 29 torehan yang berbeda yang sengaja digoreskan pada tulang fibula baboon.<ref name="Diaspora">{{cite web | last = Williams | first = Scott W. | year = 2005 | url = http://www.math.buffalo.edu/mad/Ancient-Africa/lebombo.html | title = The Oldest Mathematical Object is in Swaziland | work = Mathematicians of the African Diaspora | publisher = SUNY Buffalo mathematics department | accessdate = 2006-05-06}}</ref> Terdapat bukti bahwa kaum perempuan biasa menghitung untuk mengingat [[siklus haid]] mereka; 28 sampai 30 goresan pada [[tulang]] atau [[batu]], diikuti dengan tanda yang berbeda.<ref>{{cite web | last = Kellermeier | first = John | year = 2003 | url = http://www.tacomacc.edu/home/jkellerm/Papers/Menses/Menses.htm | title = How Menstruation Created Mathematics | work = Ethnomathematics | publisher = Tacoma Community College | accessdate = 2006-05-06}}</ref> Juga [[artefak]] [[prasejarah]] ditemukan di [[Afrika]] dan [[Perancis]], dari tahun 35.000 SM dan berumur 20.000 tahun,<ref>[http://www.math.buffalo.edu/mad/Ancient-Africa/ishango.html Benda matematika kuno]</ref> menunjukkan upaya dini untuk menghitung waktu.<ref>[http://etopia.sintlucas.be/3.14/Ishango_meeting/Mathematics_Africa.pdf Matematika di Afrika bagian tengah sebelum pendudukan]</ref>
 
Tulang Ishango, ditemukan di dekat batang air [[Sungai Nil]] (timur laut [[Republik Demokratik Kongo|Kongo]]), berisi sederetan tanda lidi yang digoreskan di tiga lajur memanjang pada tulang itu. Tafsiran umum adalah bahwa tulang Ishango menunjukkan peragaan terkuno yang sudah diketahui tentang [[barisan]] [[bilangan prima]]<ref name="Diaspora"/> atau kalender lunar enam bulan.<ref name=Marshack>Marshack, Alexander (1991): ''The Roots of Civilization'', Colonial Hill, Mount Kisco, NY.</ref> [[Periode Predinastik Mesir]] dari milenium ke-5 SM, secara grafis menampilkan rancangan-rancangan [[geometri]]s. Telah diakui bahwa bangunan [[megalit]] di [[Inggris]] dan [[Skotlandia]], dari milenium ke-3 SM, menggabungkan gagasan-gagasan geometri seperti [[lingkaran]], [[elips]], dan [[tripel Pythagoras]] di dalam rancangan mereka.<ref>Thom, Alexander, and Archie Thom, 1988, "The metrology and geometry of Megalithic Man", pp 132-151 in C.L.N. Ruggles, ed., ''Records in Stone: Papers in memory of Alexander Thom''. Cambridge Univ. Press. ISBN 0-521-33381-4.</ref>
Baris 26 ⟶ 24:
Bertentangan dengan langkanya sumber pada [[Matematika Mesir]], pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an.<ref>{{Harv|Boyer|1991|loc="Mesopotamia" p. 25}}</ref> Ditulis di dalam [[tulisan paku]], lempengan ditulisi ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
 
Bukti terdini matematika tertulis adalah karya [[Sumeria|bangsa Sumeria]], yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit [[metrologi]] sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan [[tabel perkalian]] pada lempengan tanah liat dan berurusan dengan latihan-latihan [[geometri]] dan soal-soal [[pembagian]]. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.<ref>Duncan J. Melville (2003). [http://it.stlawu.edu/~dmelvill/mesomath/3Mill/chronology.html Third Millennium Chronology] {{Webarchive|url=https://web.archive.org/web/20180707213616/http://it.stlawu.edu/~dmelvill/mesomath/3Mill/chronology.html|date=2018-07-07}}, ''Third Millennium Mathematics''. [[Universitas St. Lawrence]].</ref>
 
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan [[bilangan regular]], [[invers perkalian]], dan [[bilangan prima kembar]].<ref>{{cite book | authorlink = Aaboe | last = Aaboe | first = Asger | title = Episodes from the Early History of Mathematics | year = 1998 | publisher = Random House | location = New York | pages = 30–31}}</ref> Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian [[persamaan linear]] dan [[persamaan kuadrat]]. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
 
Matematika Babilonia ditulis menggunakan [[sistem bilangan]] [[seksagesimal]] (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran [[lingkaran]], juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Kemajuan orang Babilonia di dalam matematika didukung oleh fakta bahwa 60 memiliki banyak pembagi. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem [[desimal]]. Bagaimanapun, mereka kekurangan kesetaraan koma desimal, dan sehingga nilai tempat suatu simbol seringkalisering kali harus dikira-kira berdasarkan konteksnya.
 
=== Mesir ===
Baris 36 ⟶ 34:
Matematika [[Mesir]] merujuk pada matematika yang ditulis di dalam [[bahasa Mesir]]. Sejak [[peradaban helenistik]], [[bahasa Yunani|Yunani]] menggantikan bahasa Mesir sebagai bahasa tertulis bagi kaum terpelajar [[Bangsa Mesir]], dan sejak itulah matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan [[Matematika Yunani|Matematika helenistik]]. Pengkajian matematika di [[Mesir]] berlanjut di bawah [[Khalifah|Khilafah Islam]] sebagai bagian dari [[matematika Islam]], ketika [[bahasa Arab]] menjadi bahasa tertulis bagi kaum terpelajar Mesir.
 
Tulisan matematika Mesir yang paling panjang adalah [[Lembaran Rhind]] (kadang-kadang disebut juga "Lembaran Ahmes" berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari [[Kerajaan Tengah Mesir|Kerajaan Tengah]] yaitu dari tahun 2000-1800 SM.<ref name="Boyer 1991 loc=Egypt p. 11">{{Harv|Boyer|1991|loc="Egypt" p. 11}}</ref> Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, perbagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya,<ref>[http://www.mathpages.com/home/kmath340/kmath340.htm Pecahan Satuan Mesir] di MathPages</ref> termasuk [[bilangan komposit]] dan [[bilangan prima|prima]]; [[rata-rata aritmetika]], [[rata-rata geometri|geometri]], dan [[rata-rata harmonik|harmonik]]; dan pemahaman sederhana [[Saringan Eratosthenes]] dan [[bilangan sempurna|teori bilangan sempurna]] (yaitu, bilangan 6).<ref>[{{Cite web |url=http://mathpages.com/home/rhind.htm] |title=Salinan arsip |access-date=2010-03-01 |archive-date=2006-10-16 |archive-url=https://web.archive.org/web/20061016120307/http://www.mathpages.com/home/rhind.htm |dead-url=yes }}</ref> Lembaran itu juga berisi cara menyelesaikan [[persamaan linear]] orde satu <ref>[http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/Egyptian_papyri.html]</ref> juga [[barisan aritmetika]] dan [[barisan geometri|geometri]].<ref>[http://www.math.buffalo.edu/mad/Ancient-Africa/mad_ancient_egypt_algebra.html#areithmetic%20series]</ref>
 
Juga tiga unsur geometri yang tertulis di dalam lembaran Rhind menyiratkan bahasan paling sederhana mengenai [[geometri analitik]]: (1) pertama, cara memperoleh hampiran <math>\pi</math> yang akurat kurang dari satu persen; (2) kedua, upaya kuno [[penguadratan lingkaran]]; dan (3) ketiga, penggunaan terdini [[kotangen]].
 
Naskah matematika Mesir penting lainnya adalah [[lembaran Moskwa]], juga dari zaman [[Kerajaan Mesir Pertengahan|Kerajaan Pertengahan]], bertarikh kira-kira 1890 SM.<ref name="Boyer 1991 loc=Egypt p. 19">{{Harv|Boyer|1991|loc="Egypt" p. 19}}</ref> Naskah ini berisikan ''soal kata'' atau ''soal cerita'', yang barangkali ditujukan sebagai hiburan. Satu soal dipandang memiliki kepentingan khusus karena soal itu memberikan metodametode untuk memperoleh volume [[limas]] terpenggal: "Jika Anda dikatakan: Limas terpenggal setinggi 6 satuan panjang, yakni 4 satuan panjang di bawah dan 2 satuan panjang di atas. Anda menguadratkan 4, sama dengan 16. Anda menduakalilipatkan 4, sama dengan 8. Anda menguadratkan 2, sama dengan 4. Anda menjumlahkan 16, 8, dan 4, sama dengan 28. Anda ambil sepertiga dari 6, sama dengan 2. Anda ambil dua kali lipat dari 28 twice, sama dengan 56. Maka lihatlah, hasilnya sama dengan 56. Anda memperoleh kebenaran."
 
Akhirnya, [[lembaran Berlin]] (kira-kira 1300 SM <ref>[{{Cite web |url=http://www.aams.org.au/contents.php?subdir=library%2Fhistory%2F&filename=pharonic_egypt |title=Salinan arsip |access-date=2021-03-07 |archive-date=2019-03-05 |archive-url=https:/history/web.archive.org/web/20190305173434/http://www.aams.org.au/contents.php?subdir=library%2Fhistory%2F&filename=pharonic_egypt] |dead-url=yes }}</ref>) menunjukkan bahwa bangsa Mesir kuno dapat menyelesaikan [[persamaan aljabar]] orde dua.<ref>[http://www.math.buffalo.edu/mad/Ancient-Africa/mad_ancient_egyptpapyrus.html#berlin]</ref>
 
== Matematika Yunani ==
{{utama|Matematika Yunani}}
[[Berkas:Kapitolinischer Pythagoras.jpg|leftkiri|thumbjmpl|180px|Pythagoras dari Samos]]
Matematika Yunani merujuk pada matematika yang ditulis di dalam [[bahasa Yunani]] antara tahun 600 SM sampai 300 M.<ref>Howard Eves, ''An Introduction to the History of Mathematics'', Saunders, 1990, ISBN 0-03-029558-0</ref> Matematikawan Yunani tinggal di kota-kota sepanjang Mediterania bagian timur, dari [[Italia]] hingga ke [[Afrika Utara]], tetapi mereka dibersatukan oleh budaya dan bahasa yang sama. Matematikawan Yunani pada periode setelah [[Iskandar Agung]] kadang-kadang disebut Matematika Helenistik.
 
[[Berkas:Thales.jpg|thumbjmpl|180px|Thales dari Miletus]] Matematika Yunani lebih berbobot daripada matematika yang dikembangkan oleh kebudayaan-kebudayaan pendahulunya. Semua naskah matematika pra-Yunani yang masih terpelihara menunjukkan penggunaan penalaran induktif, yakni pengamatan yang berulang-ulang yang digunakan untuk mendirikan aturan praktis. Sebaliknya, matematikawan Yunani menggunakan penalaran deduktif. Bangsa Yunani menggunakan logika untuk menurunkan simpulan dari definisi dan [[aksioma]], dan menggunakan [[kekakuan matematika]] untuk [[bukti matematika|membuktikannya]].<ref>Martin Bernal, "Animadversions on the Origins of Western Science", pp. 72–83 in Michael H. Shank, ed., ''The Scientific Enterprise in Antiquity and the Middle Ages'', (Chicago: University of Chicago Press) 2000, p. 75.</ref>
 
Matematika Yunani diyakini dimulakan oleh [[Thales dari Miletus]] (kira-kira 624 sampai 546 SM) dan [[Pythagoras dari Samos]] (kira-kira 582 sampai 507 SM). Meskipun perluasan pengaruh mereka dipersengketakan, mereka mungkin diilhami oleh [[Matematika Mesir]] dan [[Matematika Babilonia|Babilonia]]. Menurut legenda, Pythagoras bersafari ke Mesir untuk mempelajari matematika, geometri, dan astronomi dari pendeta Mesir.
 
[[Thales]] menggunakan [[geometri]] untuk menyelesaikan soal-soal perhitungan ketinggian piramida dan jarak perahu dari garis pantai. Dia dihargai sebagai orang pertama yang menggunakan penalaran deduktif untuk diterapkan pada geometri, dengan menurunkan empat akibat wajar dari [[teorema Thales]]. Hasilnya, dia dianggap sebagai matematikawan sejati pertama dan pribadi pertama yang menghasilkan temuan matematika.<ref>{{Harv|Boyer|1991|loc="Ionia and the Pythagoreans" p. 43}}</ref> Pythagoras mendirikan [[Mazhab Pythagoras]], yang mendakwakan bahwa matematikalah yang menguasai semesta dan semboyannya adalah "semua adalah bilangan".<ref>{{Harv|Boyer|1991|loc="Ionia and the Pythagoreans" p. 49}}</ref> Mazhab Pythagoraslah yang menggulirkan istilah "matematika", dan merekalah yang memulakan pengkajian matematika. Mazhab Pythagoras dihargai sebagai penemu bukti pertama [[teorema Pythagoras]],<ref>Eves, Howard, An Introduction to the History of Mathematics, Saunders, 1990, ISBN 0-03-029558-0.</ref> meskipun diketahui bahwa teorema itu memiliki sejarah yang panjang, bahkan dengan bukti keujudan bilangan irasional.
 
[[EudoxusEudoksos dari Knidos|Eudoksos]] (kira-kira 408 SM sampai 355 SM) mengembangkan [[metodametode kelelahanpenghabis]], sebuah rintisan dari [[Integral]] modern. [[Aristoteles]] (kira-kira 384 SM sampai 322 SM) mulai menulis hukum [[logika]]. [[Euklides]] (kira-kira 300 SM) adalah contoh terdini dari format yang masih digunakan oleh matematika saat ini, yaitu definisi, aksioma, teorema, dan bukti. Dia juga mengkaji [[kerucut]]. Bukunya, [[Elemen Euklides|''Elemen'']], dikenal di segenap masyarakat terdidik di Barat hingga pertengahan abad ke-20.<ref>Howard Eves, ''An Introduction to the History of Mathematics'', Saunders, 1990, ISBN 0-03-029558-0 p. 141: "Tiada karya, selain [[Alkitab]], yang lebih sering dibaca...."</ref> Selain teorema geometri yang terkenal, seperti teorem Pythagoras, ''Elemen'' menyertakan bukti bahwa akar kuadrat dari dua adalah irasional dan terdapat tak-hingga banyaknya bilangan prima. [[Saringan Eratosthenes]] (kira-kira 230 SM) digunakan untuk menemukan bilangan prima.
 
[[Archimedes]] (kira-kira 287 SM sampai 212 SM) dari [[Syracuse, Italia|SyracuseSirakusa]] menggunakan [[metodametode kelelahanpenghabis]] untuk menghitung [[luas]] di bawah busur [[parabola]] dengan [[Barisan (matematika)|penjumlahan barisan tak hingga]], dan memberikan hampiran yang cukup akurat terhadap [[Pi]].<ref>{{cite web | title = A history of calculus | author = O'Connor, J.J. and Robertson, E.F. | publisher = [[Universitas St Andrews]] | url = http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html | date = February 1996 | accessdate = 2007-08-07 | archive-date = 2007-07-15 | archive-url = https://web.archive.org/web/20070715191704/http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html | dead-url = yes }}</ref> Dia juga mengkaji [[spiral Archimedes|spiral]] yang mengharumkan namanya, rumus-rumus [[volume]] [[benda putar]], dan sistem rintisan untuk menyatakan bilangan yang sangat besar.
 
== Matematika Cina ==
{{utama|Matematika Cina}}{{Bagian tanpa referensi|date=Maret 2022}}[[Berkas:九章算術.gif|jmpl|150px|ka|''Sembilan Bab tentang Seni Matematika''.]]
{{utama|Matematika Cina}}
[[Berkas:九章算術.gif|thumb|150px|right|''Sembilan Bab tentang Seni Matematika''.]]
 
Matematika Cina permulaan adalah berlainan bila dibandingkan dengan yang berasal dari belahan dunia lain, sehingga cukup masuk akal bila dianggap sebagai hasil pengembangan yang mandiri.<ref>{{Harv|Boyer|1991|loc="China and India" p. 201}}</ref> Tulisan matematika yang dianggap tertua dari Cina adalah ''[[Chou Pei Suan Ching]]'', berangka tahun antara 1200 SM sampai 100 SM, meskipun angka tahun 300 SM juga cukup masuk akal.<ref>{{Harv|Boyer|1991|loc="China and India" p. 196}}</ref>
 
Hal yang menjadi catatan khusus dari penggunaan matematika Cina adalah sistem notasi posisional bilangan desimal, yang disebut pula "bilangan batang" di mana sandi-sandi yang berbeda digunakan untuk bilangan-bilangan antara 1 dan 10, dan sandi-sandi lainnya sebagai perpangkatan dari sepuluh.<ref>{{Harvnb|Katz|2007|pp=194–199}}</ref> Dengan demikian, bilangan 123 ditulis menggunakan lambang untuk "1", diikuti oleh lambang untuk "100", kemudian lambang untuk "2" diikuti lambang utnuk "10", diikuti oleh lambang untuk "3". Cara seperti inilah yang menjadi sistem bilangan yang paling canggih di dunia pada saat itu, mungkin digunakan beberapa abad sebelum periode masehi dan tentunya sebelum dikembangkannya sistem bilangan India.<ref>{{Harv|Boyer|1991|loc="China and India" p. 198}}</ref> Bilangan batang memungkinkan penyajian bilangan sebesar yang diinginkan dan memungkinkan perhitungan yang dilakukan pada ''[[suanpan|suan pan]]'', atau ([[Swipoa|sempoa]] Cina). Tanggal penemuan ''suan pan'' tidaklah pasti, tetapi tulisan terdini berasal dari tahun 190 M, di dalam ''Catatan Tambahan tentang Seni Gambar'' karya Xu Yue.
 
Karya tertua yang masih terawat mengenai [[geometri]] di Cina berasal dari peraturan kanonik filsafat [[Mohisme]] kira-kira tahun 330 SM, yang disusun oleh para pengikut [[Mozi]] (470–390 SM). ''Mo Jing'' menjelaskan berbagai aspek dari banyak disiplin yang berkaitan dengan ilmu fisika, dan juga memberikan sedikit kekayaan informasi matematika.
 
Pada tahun 212 SM, Kaisar [[Qín Shǐ Huáng]] (Shi Huang-ti) memerintahkan semua buku di dalam Kekaisaran Qin selain daripada yang resmi diakui pemerintah haruslah dibakar. Dekret ini tidak dihiraukan secara umum, tetapi akibat dari perintah ini adalah begitu sedikitnya informasi tentang matematika Cina kuno yang terpelihara yang berasal dari zaman sebelum itu. Setelah [[pembakaran buku dan penguburan sarjana|pembakaran buku]] pada tahun 212 SM, [[dinasti Han]] (202 SM–220 M) menghasilkan karya matematika yang barangkali sebagai perluasan dari karya-karya yang kini sudah hilang. Yang terpenting dari semua ini adalah ''[[Sembilan Bab tentang Seni Matematika]]'', judul lengkap yang muncul dari tahun 179 M, tetapi wujud sebagai bagian di bawah judul yang berbeda. Ia terdiri dari 246 soal kata yang melibatkan pertanian, perdagangan, pengerjaan geometri yang menggambarkan rentang ketinggian dan perbandingan dimensi untuk menara [[pagoda Cina]], teknik, [[survey]], dan bahan-bahan [[segitiga siku-siku]] dan [[π]]. Ia juga menggunakan [[prinsip Cavalieri]] tentang volume lebih dari seribu tahun sebelum Cavalieri mengajukannya di Barat. Ia menciptakan bukti matematika untuk [[teorema Pythagoras]], dan rumus matematika untuk [[eliminasi Gauss]]. [[Liu Hui]] memberikan komentarnya pada karya ini pada abad ke-3 M.
 
[[Berkas:Zhang Heng.jpg|thumbjmpl|leftkiri|130px|[[Zhang Heng]] (78–139)]]
 
Sebagai tambahan, karya-karya matematika dari astronom Han dan penemu [[Zhang Heng]] (78–139) memiliki perumusan untuk [[pi]] juga, yang berbeda dari cara perhitungan yang dilakukan oleh Liu Hui. Zhang Heng menggunakan rumus pi-nya untuk menentukan volume bola. Juga terdapat karya tertulis dari matematikawan dan [[teori musik|teoriwan musik]] [[Jing Fang]] (78–37 SM); dengan menggunakan [[koma Pythagoras]], Jing mengamati bahwa 53 [[perlimaan sempurna]] menghampiri 31 [[oktaf]]. Ini kemudian mengarah pada penemuan [[53 temperamen sama]], dan tidak pernah dihitung dengan tepat [http://www.tonalsoft.com/enc/m/mercator-comma.aspx di tempat lain] hingga seorang [[Jerman]], [[Nicholas Mercator]] melakukannya pada abad ke-17.
 
Bangsa Cina juga membuat penggunaan diagram kombinatorial kompleks yang dikenal sebagai [[kotak ajaib]] dan [[lingkaran ajaib (matematika)|lingkaran ajaib]], dijelaskan dipada zaman kuno dan disempurnakan oleh [[Yang Hui]] (1238–1398 M). [[Zu Chongzhi]] (abad ke-5) dari [[Dinasti Selatan dan Utara]] menghitung nilai pi sampai tujuh tempat desimal, yang bertahan menjadi nilai pi paling akurat selama hampir 1.000 tahun.
 
Bahkan setelah matematika Eropa mulai mencapai kecemerlangannya pada masa [[Renaisans]], matematika Eropa dan Cina adalah tradisi yang saling terpisah, dengan menurunnya hasil matematika Cina secara signifikan, hingga para misionaris [[Jesuit]] seperti [[Matteo Ricci]] membawa gagasan-gagasan matematika kembali dan kemudian di antara dua kebudayaan dari abad ke-16 sampai abad ke-18.
Baris 81 ⟶ 78:
== Matematika India ==
{{utama|Matematika India}}
[[Berkas:2064 aryabhata-crp.jpg|thumbjmpl|Arca [[Aryabhata]]. Karena informasi tentang keujudannya tidak diketahui, perupaan Aryabhata didasarkan pada daya khayal seniman.]]
 
Peradaban terdini anak benua India adalah [[Peradaban Lembah Indus]] yang mengemuka di antara tahun 2600 dan 1900 SM di daerah aliran [[Sungai Indus]]. Kota-kota mereka teratur secara geometris, tetapi dokumen matematika yang masih terawat dari peradaban ini belum ditemukan.<ref>{{Harv|Boyer|1991|loc="China and India" p. 206}}</ref>
 
Matematika Vedanta dimulakan di India sejak [[Zaman Besi]]. ''[[Shatapatha Brahmana]]'' (kira-kira abad ke-9 SM), menghampiri nilai [[π]],<ref>[http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch4_1.html] {{Webarchive|url=https://web.archive.org/web/20090426035326/http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch4_1.html|date=2009-04-26}}. Nilai yang diberikan adalah 25/8 (3,125); 900/289 (3,11418685...); 1156/361 (3,202216...), dan 339/108 (3,1389), yang ditulis terakhir adalah benar (ketika dibulatkan) sampai dua tempat desimal</ref> dan [[Sulba Sutras]] (kira-kira 800–500 SM) yang merupakan tulisan-tulisan [[geometri]] yang menggunakan [[bilangan irasional]], [[bilangan prima]], [[aturan tiga (matematika)|aturan tiga]] dan [[akar kubik]]; menghitung [[akar kuadrat]] dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi [[penguadratan lingkaran|lingkaran yang luasnya menghampiri persegi yang diberikan]],<ref>[http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Indian_sulbasutras.html Sulbasutra India] {{Webarchive|url=https://web.archive.org/web/20160407212457/http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Indian_sulbasutras.html |date=2016-04-07 }}. Metode konstruksi persegi bersisi 13/15 kali diameter lingkaran yang diberikan (bersesuaian dengan π=3.00444), jadi ini bukan hampiran yang sangat baik.</ref> menyelesaikan [[persamaan linear]] dan [[persamaan kuadrat|kuadrat]]; mengembangkan [[tripel Pythagoras]] secara aljabar, dan memberikan pernyataan dan bukti numerik untuk [[teorema Pythagoras]].
 
{{Unicode|[[Pāṇini]]}} (kira-kira abad ke-5 SM) yang merumuskan aturan-aturan [[tata bahasa Sanskerta]].<ref>{{Citation
Baris 99 ⟶ 96:
| pages=43–80
| doi=10.1023/A:1017506118885
}}</ref> Notasi yang dia gunakan sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, [[transformasi (geometri)|transformasi]], dan [[rekursi]]. [[Pingala]] (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalahnya [[Prosody (puisi)|prosody]] menggunakan alat yang bersesuaian dengan [[sistem bilangan biner]]. Pembahasannya tentang [[kombinatorika]] [[meter (musik)|meter]] bersesuaian dengan versi dasar dari [[teorema binomial]]. Karya Pingala juga berisi gagasan dasar tentang [[bilangan Fibonacci]] (yang disebut ''mātrāmeru'').<ref>Rachel W. Hall. [http://www.sju.edu/~rhall/mathforpoets.pdf Matematika bagi pujangga dan penabuh drum] {{Webarchive|url=https://web.archive.org/web/20120212145748/http://www.sju.edu/~rhall/mathforpoets.pdf |date=2012-02-12 }}. ''Math Horizons'' '''15''' (2008) 10-11.</ref>
 
''[[Surya Siddhanta]]'' (kira-kira 400) memperkenalkan [[fungsi trigonometri]] [[sinus]], [[kosinus]], dan balikan sinus, dan meletakkan aturan-aturan yang menentukan gerak sejati benda-benda langit, yang bersesuaian dengan posisi mereka sebenarnya di langit.<ref>http://www.westgatehouse.com/cycles.html Exegesis of Hindu Cosmological Time Cycles</ref> Daur waktu [[kosmologi]] dijelaskan di dalam tulisan itu, yang merupakan salinan dari karya terdahulu, bersesuaian dengan rata-rata [[tahun siderik]] 365,2563627 hari, yang hanya 1,4 detik lebih panjang daripada nilai modern sebesar 365,25636305 hari. Karya ini diterjemahkan ke dalam [[bahasa Arab]] dan [[bahasa Latin]] pada [[Zaman Pertengahan]].
 
[[Aryabhata]], pada tahun 499, memperkenalkan fungsi [[versinus]], menghasilkan tabel [[trigonometri]] India pertama tentang sinus, mengembangkan teknik-teknik dan [[algoritmaalgoritme]] [[aljabar]], [[infinitesimal]], dan [[persamaan diferensial]], dan memperoleh solusi seluruh bilangan untuk persamaan linear oleh sebuah metode yang setara dengan metode modern, bersama-sama dengan perhitungan [[astronomi]] yang akurat berdasarkan sistem [[heliosentris]] [[gravitasi]].<ref name="sarma">{{citation | author=[[K. V. Sarma]] | journal=Indian Journal of History of Science | year=2001 | pages=105–115 | title=Āryabhaṭa: His name, time and provenance | volume=36 | issue=4 | url=http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20005b67_105.pdf | accessdate=2010-03-01 | archive-date=2010-03-31 | archive-url=https://web.archive.org/web/20100331152303/http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_1/20005b67_105.pdf | dead-url=yes }}</ref> Sebuah terjemahan [[bahasa Arab]] dari karyanya ''Aryabhatiya'' tersedia sejak abad ke-8, diikuti oleh terjemahan bahasa Latin pada abad ke-13. Dia juga memberikan nilai π yang bersesuaian dengan 62832/20000 = 3,1416. Pada abad ke-14, [[Madhava dari Sangamagrama]] menemukan [[rumus Leibniz untuk pi]], dan, menggunakan 21 suku, untuk menghitung nilai π sebagai 3,14159265359.
<!--
In the 7th century, [[Brahmagupta]] identified the [[Brahmagupta theorem]], [[Brahmagupta's identity]] and [[Brahmagupta's formula]], and for the first time, in ''[[Brahmasphutasiddhanta|Brahma-sphuta-siddhanta]]'', he lucidly explained the use of [[0 (number)|zero]] as both a [[placeholder]] and [[decimal digit]], and explained the [[Hindu-Arabic numeral system]].<ref name="Boyer Siddhanta">{{cite book|last=Boyer|authorlink=Carl Benjamin Boyer|title=|year=1991|chapter=The Arabic Hegemony|pages=226|quote=By 766 we learn that an astronomical-mathematical work, known to the Arabs as the ''Sindhind'', was brought to Baghdad from India. It is generally thought that this was the ''Brahmasphuta Siddhanta'', although it may have been the ''Surya Siddhanata''. A few years later, perhaps about 775, this ''Siddhanata'' was translated into Arabic, and it was not long afterwards (ca. 780) that Ptolemy's astrological ''Tetrabiblos'' was translated into Arabic from the Greek.}}</ref> It was from a translation of this Indian text on mathematics (c. 770) that Islamic mathematicians were introduced to this numeral system, which they adapted as [[Arabic numerals]]. Islamic scholars carried knowledge of this number system to Europe by the 12th century, and it has now displaced all older number systems throughout the world. In the 10th century, [[Halayudha]]'s commentary on [[Pingala]]'s work contains a study of the [[Fibonacci sequence]] and [[Pascal's triangle]], and describes the formation of a [[matrix (mathematics)|matrix]].
 
== Peranan ==
In the 12th century, [[Bhaskara]]<ref name="Plofker 418-419">{{cite book | first = Kim | last = Plofker | year = 2007 | pages = 418–419 | title = | quote = The ''Paitamahasiddhanta'' also directly inspired another major ''siddhanta'', written by a contemporary of Bhaskara: The ''Brahmasphutasiddhanta'' (''Corrected Treatise of Brahma'') completed by Brahmagupta in 628. This astronomer was born in 598 and apparently worked in Bhillamal (identified with modern Bhinmal in Rajasthan), during the reign (and possibly under the patronage) of King Vyaghramukha.<br />Although we do not know whether Brahmagupta encountered the work of his contemporary Bhaskara, he was certainly aware of the writings of other members of the tradition of the ''Aryabhatiya'', about which he has nothing good to say. This is almost the first trace we possess of the division of Indian astronomer-mathematicians into rival, sometimes antagonistic "schools." [...] it was in the application of mathematical models to the physical world - in this case, the choices of astronomical parameters and theories - that disagreements arose. [...]<br />Such critiques of rival works appear occasionally throughout the first ten astronomical chapters of the ''Brahmasphutasiddhanta'', and its eleventh chapter is entirely devoted to them. But they do not enter into the mathematical chapters that Brahmagupta devotes respectively to ''ganita'' (chapter 12) and the pulverizer (chapter 18). This division of mathematical subjects reflects a different twofold classification from Bhaskara's "mathematics of fields" and "mathematics of quantities." Instead, the first is concerned with arithmetic operations beginning with addition, proportion, interest, series, formulas for finding lengths, areas, and volumes in geometrical figures, and various procedures with fractions - in short, diverse rules for computing with known quantities. The second, on the other hand, deals with what Brahmagupta calls "the pulverizer, zero, negatives, positives, unknowns, elimination of the middle term, reduction to one [variable], ''bhavita'' [the product of two unknowns], and the nature of squares [second-degree indeterminate equations]" - that is, techniques for operating with unknown quantities. This distinction is more explicitely presented in later works as mathematics of the "manifest" and "unmanifest," respectively: i.e., what we will henceforth call "arithmetic" manipulations of known quantities and "algebraic" manipulation of so-called "seeds" or unknown quantities. The former, of course, may include geometric problems and other topics not covered by the modern definition of "arithmetic." (Like Aryabhata, Brahmagupta relegates his sine-table to an astronomical chapter where the computations require it, instead of lumping it in with other "mathematical" topics.}}</ref> first conceived [[differential calculus]], along with the concepts of the [[derivative]], [[differential]] coefficient, and differentiation. He also stated [[Rolle's theorem]] (a special case of the [[mean value theorem]]), studied [[Pell's equation]], and investigated the derivative of the sine function. From the 14th century, Madhava and other [[Kerala School]] mathematicians further developed his ideas. They developed the concepts of [[mathematical analysis]] and [[floating point]] numbers, and concepts fundamental to the overall development of [[calculus]], including the mean value theorem, term by term [[integral|integration]], the relationship of an area under a curve and its antiderivative or integral, the [[integral test for convergence]], [[iterative method]]s for solutions to [[non-linear]] equations, and a number of [[infinite series]], [[power series]], [[Taylor series]], and trigonometric series. In the 16th century, [[Jyeshtadeva]] consolidated many of the Kerala School's developments and theorems in the ''Yuktibhasa'', the world's first differential calculus text, which also introduced concepts of [[integral calculus]]. Mathematical progress in India stagnated from the late 16th century to the 20th century, due to political turmoil.
 
=== MatematikaPembelajaran Islammatematika ===
Pendidik menggunakan sejarah matematika sebagai salah satu sumber belajar matematika. Pemanfaatan sejarah matematika berkaitan dengan konsep matematika dan ilmu pedagogis. Pengetahuan tentang sejarah matematika memberikan pemahaman matematika dan hubungan timbal-balik antarkonsep dalam matematika serta evolusi konsep matematika. Pemahaman mengenai latar belakang sejarah dari suatu konsep matematika memberikan peningkatan pemahaman secara menyeluruh terhadap kemampuan pedagogis guru. Pemahaman sejarah matematika meliputi nama tokoh, latar belakang berkembangnya konsep, proses evolusi dari perkembangan konsep dan hubungan timbal-balik antarkonsep dalam matematika di dalam sejarah. Pendidik yang memahami sejarah matematika mampu memperoleh motivasi, melakukan evaluasi dari masalah yang muncul di masa lalu untuk menemukan solusinya, dan merancang [[desain pembelajaran]] suatu materi tertentu dengan menjadikan sejarah matematika sebagai landasannya.<ref>{{Cite book|last=Fachrudin|first=Achmad Dhany|date=2020|url=https://www.researchgate.net/profile/Achmad_Dhany_Fachrudin2/publication/339181317_Inovasi_Pembelajaran_Matematika_dari_Sejarah_Matematika_Belajar_Pythagoras_dari_Problem_Solving_Ancient_China_Persamaan_kuadrat_Babilonia_kuno/links/5e434f86299bf1cdb920f261/Inovasi-Pembelajaran-Matematika-dari-Sejarah-Matematika-Belajar-Pythagoras-dari-Problem-Solving-Ancient-China-Persamaan-kuadrat-Babilonia-kuno.pdf|title=Inovasi Pembelajaran Matematika dari Sejarah Matematika: Belajar Pythagoras dari Problem Solving Ancient China Persamaan Kuadrat Babilonia Kuno|location=Sidoarjo|publisher=STKIP PGRI Sidoarjo|isbn=978-602-72886-3-8|pages=6|url-status=live}}</ref>
<!--
{{Main|Mathematics in medieval Islam}}
{{See also|History of the Hindu-Arabic numeral system}}
[[Image:Abu Abdullah Muhammad bin Musa al-Khwarizmi.jpg|thumb|[[Muhammad ibn Mūsā al-Khwārizmī|Muḥammad ibn Mūsā al-Ḵwārizmī]] ]]
The [[Islamic Empire]] established across [[Persia]], the [[Middle East]], [[Central Asia]], [[North Africa]], [[Iberian Peninsula|Iberia]], and in parts of [[History of India|India]] in the 8th century made significant contributions towards mathematics. Although most Islamic texts on mathematics were written in [[Arabic language|Arabic]], most of them were not written by [[Arab]]s, since much like the status of Greek in the Hellenistic world, Arabic was used as the written language of non-Arab scholars throughout the Islamic world at the time. [[Persian people|Persians]] contributed to the world of Mathematics alongside Arabs.
 
In the 9th century, {{Unicode|[[Muhammad ibn Mūsā al-Khwārizmī|Muḥammad ibn Mūsā al-Ḵwārizmī]]}} wrote several important books on the Hindu-Arabic numerals and on methods for solving equations. His book ''On the Calculation with Hindu Numerals'', written about 825, along with the work of [[Al-Kindi]], were instrumental in spreading [[Indian mathematics]] and [[Hindu-Arabic numeral system|Indian numerals]] to the West. The word ''[[algorithm]]'' is derived from the Latinization of his name, Algoritmi, and the word ''[[algebra]]'' from the title of one of his works, ''[[The Compendious Book on Calculation by Completion and Balancing|Al-Kitāb al-mukhtaṣar fī hīsāb al-ğabr wa’l-muqābala]]'' (''The Compendious Book on Calculation by Completion and Balancing''). Al-Khwarizmi is often called the "father of algebra", for his fundamental contributions to the field.<ref>[http://www.ucs.louisiana.edu/~sxw8045/history.htm The History of Algebra]. [[Louisiana State University]].</ref> He gave an exhaustive explanation for the algebraic solution of quadratic equations with positive roots,<ref>{{Harv|Boyer|1991|loc="The Arabic Hegemony" p. 230}} "The six cases of equations given above exhaust all possibilities for linear and quadratic equations having positive root. So systematic and exhaustive was al-Khwarizmi's exposition that his readers must have had little difficulty in mastering the solutions."</ref> and he was the first to teach algebra in an [[Elementary algebra|elementary form]] and for its own sake.<ref>Gandz and Saloman (1936), ''The sources of al-Khwarizmi's algebra'', Osiris i, pp. 263–77: "In a sense, Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers".</ref> He also introduced the fundamental method of "[[Reduction (mathematics)|reduction]]" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation. This is the operation which Al-Khwarizmi originally described as ''al-jabr''.<ref name=Boyer-229>{{Harv|Boyer|1991|loc="The Arabic Hegemony" p. 229}} "It is not certain just what the terms ''al-jabr'' and ''muqabalah'' mean, but the usual interpretation is similar to that implied in the translation above. The word ''al-jabr'' presumably meant something like "restoration" or "completion" and seems to refer to the transposition of subtracted terms to the other side of an equation; the word ''muqabalah'' is said to refer to "reduction" or "balancing" - that is, the cancellation of like terms on opposite sides of the equation."</ref> His algebra was also no longer concerned "with a series of [[problem]]s to be resolved, but an [[Expository writing|exposition]] which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study." He also studied an equation for its own sake and "in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems."<ref name=Rashed-Armstrong>{{Cite book | last1=Rashed | first1=R. | last2=Armstrong | first2=Angela | year=1994 | title=The Development of Arabic Mathematics | publisher=[[Springer Science+Business Media|Springer]] | isbn=0792325656 | oclc=29181926 | pages=11–12}}</ref>
 
Further developments in algebra were made by [[Al-Karaji]] in his treatise ''al-Fakhri'', where he extends the methodology to incorporate integer powers and integer roots of unknown quantities. The first known [[Mathematical proof|proof]] by [[mathematical induction]] appears in a book written by Al-Karaji around 1000 AD, who used it to prove the [[binomial theorem]], [[Pascal's triangle]], and the sum of [[integral]] [[Cube (algebra)|cubes]].<ref>Victor J. Katz (1998). ''History of Mathematics: An Introduction'', pp. 255–59. [[Addison-Wesley]]. ISBN 0-321-01618-1.</ref> The [[historian]] of mathematics, F. Woepcke,<ref>F. Woepcke (1853). ''Extrait du Fakhri, traité d'Algèbre par Abou Bekr Mohammed Ben Alhacan Alkarkhi''. [[Paris]].</ref> praised Al-Karaji for being "the first who introduced the [[theory]] of [[algebra]]ic [[calculus]]." Also in the 10th century, [[Abul Wafa]] translated the works of [[Diophantus]] into Arabic and developed the [[tangent (trigonometry)|tangent]] function. [[Ibn al-Haytham]] was the first mathematician to derive the formula for the sum of the fourth powers, using a method that is readily generalizable for determining the general formula for the sum of any integral powers. He performed an integration in order to find the volume of a [[paraboloid]], and was able to generalize his result for the integrals of [[polynomial]]s up to the [[Quartic polynomial|fourth degree]]. He thus came close to finding a general formula for the [[integral]]s of polynomials, but he was not concerned with any polynomials higher than the fourth degree.<ref name=Katz>Victor J. Katz (1995), "Ideas of Calculus in Islam and India", ''Mathematics Magazine'' '''68''' (3): 163–74.</ref>
 
In the late 11th century, [[Omar Khayyam]] wrote ''Discussions of the Difficulties in Euclid'', a book about flaws in [[Euclid's Elements|Euclid's ''Elements'']], especially the [[parallel postulate]], and laid the foundations for [[analytic geometry]] and [[non-Euclidean geometry]].{{Citation needed|date=March 2009}} He was also the first to find the general geometric solution to [[cubic equation]]s. He was also very influential in [[calendar reform]].{{Citation needed|date=March 2009}}
 
In the late 12th century, [[Sharaf al-Dīn al-Tūsī]] introduced the concept of a [[Function (mathematics)|function]],<ref>{{Cite journal|last=Victor J. Katz|first=Bill Barton|title=Stages in the History of Algebra with Implications for Teaching|journal=Educational Studies in Mathematics|publisher=[[Springer Science+Business Media|Springer Netherlands]]|volume=66|issue=2|date=October 2007|doi=10.1007/s10649-006-9023-7|pages=185–201 [192]}}</ref> and he was the first to discover the [[derivative]] of [[Cubic function|cubic polynomials]].<ref>J. L. Berggren (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat", ''Journal of the American Oriental Society'' '''110''' (2), pp. 304–09.</ref> His ''Treatise on Equations'' developed concepts related to differential calculus, such as the derivative function and the [[maxima and minima]] of curves, in order to solve cubic equations which may not have positive solutions.<ref name=Sharaf>{{MacTutor|id=Al-Tusi_Sharaf|title=Sharaf al-Din al-Muzaffar al-Tusi}}</ref>
 
In the 13th century, [[Nasir al-Din Tusi]] (Nasireddin) made advances in [[spherical trigonometry]]. He also wrote influential work on [[Euclid]]'s [[parallel postulate]]. In the 15th century, [[Ghiyath al-Kashi]] computed the value of [[π]] to the 16th decimal place. Kashi also had an algorithm for calculating ''n''th roots, which was a special case of the methods given many centuries later by [[Ruffini]] and [[Horner]].
 
Other notable Muslim mathematicians included [[al-Samawal]], [[Abu'l-Hasan al-Uqlidisi]], [[Jamshid al-Kashi]], [[Thabit ibn Qurra]], [[Abu Kamil]] and [[Abu Sahl al-Kuhi]].
 
Other achievements of Muslim mathematicians during this period include the development of [[algebra]] and [[algorithm]]s, the development of [[spherical trigonometry]],<ref>{{cite book |last=Syed |first=M. H. |title=Islam and Science |year=2005 |publisher=Anmol Publications PVT. LTD. |isbn=8-1261-1345-6 |page=71}}</ref> the addition of the [[decimal point]] notation to the [[Arabic numerals]], the discovery of all the modern [[trigonometric function]]s besides the sine, [[al-Kindi]]'s introduction of [[cryptanalysis]] and [[frequency analysis]], the development of [[analytic geometry]] by [[Ibn al-Haytham]], the beginning of [[algebraic geometry]] by [[Omar Khayyam]], the first refutations of [[Euclidean geometry]] and the [[parallel postulate]] by [[Nasīr al-Dīn al-Tūsī]], the first attempt at a [[non-Euclidean geometry]] by Sadr al-Din, the development of an [[Mathematical notation|algebraic notation]] by [[Abū al-Hasan ibn Alī al-Qalasādī|al-Qalasādī]],<ref name=Qalasadi>{{MacTutor Biography|id=Al-Qalasadi|title= Abu'l Hasan ibn Ali al Qalasadi}}</ref> and many other advances in algebra, [[arithmetic]], calculus, [[cryptography]], [[geometry]], [[number theory]] and [[trigonometry]].
 
During the time of the [[Ottoman Empire]] from the 15th century, the development of Islamic mathematics became stagnant.
-->
 
== Matematika Eropa Pertengahan ==
<!--
Medieval European interest in mathematics was driven by concerns quite different from those of modern mathematicians. One driving element was the belief that mathematics provided the key to understanding the created order of nature, frequently justified by [[Plato]]'s ''[[Timaeus (dialogue)|Timaeus]]'' and the [[Biblical apocrypha|apocryphal]] biblical passage (in the ''[[Book of Wisdom]]'') that God had ''ordered all things in measure, and number, and weight''<ref>''Wisdom'', 11:21</ref>.
-->
 
=== Zaman Pertengahan Dini ===
<!--
[[Boethius]] provided a place for mathematics in the curriculum when he coined the term ''[[quadrivium]]'' to describe the study of arithmetic, geometry, astronomy, and music. He wrote ''De institutione arithmetica'', a free translation from the Greek of [[Nicomachus]]'s ''Introduction to Arithmetic''; ''De institutione musica'', also derived from Greek sources; and a series of excerpts from [[Euclid]]'s [[Euclid's Elements|''Elements'']]. His works were theoretical, rather than practical, and were the basis of mathematical study until the recovery of Greek and Arabic mathematical works.<ref>Caldwell, John (1981) "The ''De Institutione Arithmetica'' and the ''De Institutione Musica''", pp. 135–54 in Margaret Gibson, ed., ''Boethius: His Life, Thought, and Influence,'' (Oxford: Basil Blackwell).</ref><ref>Folkerts, Menso, ''"Boethius" Geometrie II'', (Wiesbaden: Franz Steiner Verlag, 1970).</ref>
-->
 
=== Kelahiran kembali ===
<!--
In the 12th century, European scholars traveled to Spain and Sicily [[Latin translations of the 12th century|seeking scientific Arabic texts]], including [[al-Khwarizmi]]'s ''[[The Compendious Book on Calculation by Completion and Balancing]]'', translated into Latin by [[Robert of Chester]], and the complete text of [[Euclid's Elements|Euclid's ''Elements'']], translated in various versions by [[Adelard of Bath]], [[Herman of Carinthia]], and [[Gerard of Cremona]].<ref>Marie-Thérèse d'Alverny, "Translations and Translators", pp. 421–62 in Robert L. Benson and Giles Constable, ''Renaissance and Renewal in the Twelfth Century'', (Cambridge: Harvard University Press, 1982).</ref><ref>Guy Beaujouan, "The Transformation of the Quadrivium", pp. 463–87 in Robert L. Benson and Giles Constable, ''Renaissance and Renewal in the Twelfth Century'', (Cambridge: Harvard University Press, 1982).</ref>
 
These new sources sparked a renewal of mathematics. [[Fibonacci]], writing in the ''[[Liber Abaci]]'', in 1202 and updated in 1254, produced the first significant mathematics in Europe since the time of [[Eratosthenes]], a gap of more than a thousand years. The work introduced [[Hindu-Arabic numerals]] to Europe, and discussed many other mathematical problems.
 
The fourteenth century saw the development of new mathematical concepts to investigate a wide range of problems.<ref>Grant, Edward and John E. Murdoch (1987), eds., ''Mathematics and Its Applications to Science and Natural Philosophy in the Middle Ages,'' (Cambridge: Cambridge University Press) ISBN 0-521-32260-X.</ref> One important contribution was development of mathematics of local motion.
 
[[Thomas Bradwardine]] proposed that speed (V) increases in arithmetic proportion as the ratio of force (F) to resistance (R) increases in geometric proportion. Bradwardine expressed this by a series of specific examples, but although the logarithm had not yet been conceived, we can express his conclusion anachronistically by writing:
V = log (F/R).<ref>Clagett, Marshall (1961) ''The Science of Mechanics in the Middle Ages,'' (Madison: University of Wisconsin Press), pp. 421–40.</ref> Bradwardine's analysis is an example of transferring a mathematical technique used by [[al-Kindi]] and [[Arnald of Villanova]] to quantify the nature of compound medicines to a different physical problem.<ref>Murdoch, John E. (1969) "''Mathesis in Philosophiam Scholasticam Introducta:'' The Rise and Development of the Application of Mathematics in Fourteenth Century Philosophy and Theology", in ''Arts libéraux et philosophie au Moyen Âge'' (Montréal: Institut d'Études Médiévales), at pp. 224–27.</ref>
 
One of the 14th-century [[Oxford Calculators]], [[William Heytesbury]], lacking [[differential calculus]] and the concept of [[Limit of a function|limits]], proposed to measure instantaneous speed "by the path that '''would''' be described by [a body] '''if'''... it were moved uniformly at the same degree of speed with which it is moved in that given instant".<ref>Clagett, Marshall (1961) ''The Science of Mechanics in the Middle Ages,'' (Madison: University of Wisconsin Press), pp. 210, 214–15, 236.</ref>
 
Heytesbury and others mathematically determined the distance covered by a body undergoing uniformly accelerated motion (today solved by [[Integral|integration]]), stating that "a moving body uniformly acquiring or losing that increment [of speed] will traverse in some given time a [distance] completely equal to that which it would traverse if it were moving continuously through the same time with the mean degree [of speed]".<ref>Clagett, Marshall (1961) ''The Science of Mechanics in the Middle Ages,'' (Madison: University of Wisconsin Press), p. 284.</ref>
 
[[Nicole Oresme]] at the [[University of Paris]] and the Italian [[Giovanni di Casali]] independently provided graphical demonstrations of this relationship, asserting that the area under the line depicting the constant acceleration, represented the total distance traveled.<ref>Clagett, Marshall (1961) ''The Science of Mechanics in the Middle Ages,'' (Madison: University of Wisconsin Press), pp. 332–45, 382–91.</ref> In a later mathematical commentary on Euclid's ''Elements'', Oresme made a more detailed general analysis in which he demonstrated that a body will acquire in each successive increment of time an increment of any quality that increases as the odd numbers. Since Euclid had demonstrated the sum of the odd numbers are the square numbers, the total quality acquired by the body increases as the square of the time.<ref>Nicole Oresme, "Questions on the ''Geometry'' of Euclid" Q. 14, pp. 560–65, in Marshall Clagett, ed., ''Nicole Oresme and the Medieval Geometry of Qualities and Motions,'' (Madison: University of Wisconsin Press, 1968).</ref>
-->
 
== Matematika Eropa modern dini ==
<!--
[[Image:Pacioli.jpg|thumb|right|250px|Pacioli's portrait, a painting by [[Jacopo de' Barbari]], 1495, ([[Museo di Capodimonte]]).The open book to which he is pointing may be his ''Summa de Arithmetica, Geometria, Proportioni et Proportionalità''.<ref>Lauwers, Luc & Willekens, Marleen: "Five Hundred Years of Bookkeeping: A Portrait of Luca Pacioli" (Tijdschrift voor Economie en Management, [[Katholieke Universiteit Leuven]], 1994, vol:XXXIX issue:3 pages:289–304)[https://lirias.kuleuven.be/bitstream/123456789/119065/1/TEM1994-3_289-304p.pdf]</ref>]]
 
The development of [[mathematics]] and [[accounting]] was intertwined during the [[Renaissance]].<ref>Alan Sangster, Greg Stoner & Patricia McCarthy: "The market for Luca Pacioli’s Summa Arithmetica" (Accounting, Business & Financial History Conference, Cardiff, September 2007) p. 1–2</ref> While there is no direct relationship between algebra and accounting, the teaching of the subjects and the books published often intended for the children of merchants who were sent to reckoning schools (in [[Flanders]] and [[Germany]]) or [[abacus school]]s (known as ''abbaco'' in Italy), where they learned the skills useful for trade and commerce. There is probably no need for algebra in performing [[bookkeeping]] operations, but for complex bartering operations or the calculation of [[compound interest]], a basic knowledge of arithmetic was mandatory and knowledge of algebra was very useful.<ref>Heeffer, Albrecht: ''On the curious historical coincidence of algebra and double-entry bookkeeping'', Foundations of the Formal Sciences, [[Ghent University]], November 2009, p.7 [http://logica.ugent.be/albrecht/thesis/FOTFS2008-Heeffer.pdf]</ref>
 
[[Luca Pacioli]]'s ''"Summa de Arithmetica, Geometria, Proportioni et Proportionalità"'' (Italian: "Review of [[Arithmetic]], [[Geometry]], [[Ratio]] and [[Proportion]]") was first printed and published in [[Venice]] in 1494. It included a 27-page [[treatise]] on [[bookkeeping]], ''"Particularis de Computis et Scripturis"'' (Italian: "Details of Calculation and Recording"). It was written primarily for, and sold mainly to, merchants who used the book as a reference text, as a source of pleasure from the [[mathematical puzzles]] it contained, and to aid the education of their sons. In ''Summa Arithmetica'', Pacioli introduced symbols for [[plus and minus]] for the first time in a printed book, symbols that became standard notation in Italian Renaissance mathematics. ''Summa Arithmetica'' was also the first known book printed in Italy to contain [[algebra]].<ref>Alan Sangster, Greg Stoner & Patricia McCarthy: "The market for Luca Pacioli’s Summa Arithmetica" (Accounting, Business & Financial History Conference, Cardiff, September 2007) p.1–2 [http://www.cardiff.ac.uk/carbs/conferences/abfh07/summa.pdf]</ref>
 
Driven by the demands of navigation and the growing need for accurate maps of large areas, [[trigonometry]] grew to be a major branch of mathematics. [[Bartholomaeus Pitiscus]] was the first to use the word, publishing his ''Trigonometria'' in 1595. Regiomontanus's table of sines and cosines was published in 1533.<ref>{{cite book | last = Grattan-Guinness | first = Ivor | year = 1997 | title = The Rainbow of Mathematics: A History of the Mathematical Sciences | publisher = W.W. Norton | isbn = 0-393-32030-8}}</ref>
-->
 
== Abad ke-17 ==
<!--
The 17th century saw an unprecedented explosion of mathematical and scientific ideas across Europe. [[Galileo]], an Italian, observed the moons of Jupiter in orbit about that planet, using a telescope based on a toy imported from Holland. [[Tycho Brahe]], a Dane, had gathered an enormous quantity of mathematical data describing the positions of the planets in the sky. His student, [[Johannes Kepler]], a German, began to work with this data. In part because he wanted to help Kepler in his calculations, [[John Napier]], in Scotland, was the first to investigate [[natural logarithm]]s. Kepler succeeded in formulating mathematical laws of planetary motion. The [[analytic geometry]] developed by [[René Descartes]] (1596–1650), a French mathematician and philosopher, allowed those orbits to be plotted on a graph, in [[Cartesian coordinates]].
 
Building on earlier work by many predecessors, [[Isaac Newton]], an Englishman, discovered the laws of physics explaining [[Kepler's Laws]], and brought together the concepts now known as [[infinitesimal calculus]]. Independently, [[Gottfried Wilhelm Leibniz]], in Germany, developed calculus and much of the calculus notation still in use today. Science and mathematics had become an international endeavor, which would soon spread over the entire world.<ref>Eves, Howard, An Introduction to the History of Mathematics, Saunders, 1990, ISBN 0-03-029558-0, p. 379, "...the concepts of calculus...(are) so far reaching and have exercised such an impact on the modern world that it is perhaps correct to say that without some knowledge of them a person today can scarcely claim to be well educated."</ref>
 
In addition to the application of mathematics to the studies of the heavens, applied mathematics began to expand into new areas, with the correspondence of [[Pierre de Fermat]] and [[Blaise Pascal]]. Pascal and Fermat set the groundwork for the investigations of [[probability theory]] and the corresponding rules of [[combinatorics]] in their discussions over a game of [[gambling]]. Pascal, with his [[Pascal's Wager|wager]], attempted to use the newly developing probability theory to argue for a life devoted to religion, on the grounds that even if the probability of success was small, the rewards were infinite. In some sense, this foreshadowed the development of [[utility theory]] in the 18th–19th century.
-->
 
== Abad ke-18 ==
<!--
[[Image:Leonhard Euler.jpg|left|thumb|[[Leonhard Euler]] by [[Emanuel Handmann]].]]
 
The most influential mathematician of the 1700s was arguably [[Leonhard Euler]]. His contributions range from founding the study of [[graph theory]] with the [[Seven Bridges of Königsberg]] problem to standardizing many modern mathematical terms and notations. For example, he named the square root of minus 1 with the symbol <font face="times new Roman">[[Imaginary unit|''i'']]</font>, and he popularized the use of the Greek letter <math>\pi</math> to stand for the ratio of a circle's circumference to its diameter. He made numerous contributions to the study of topology, graph theory, calculus, combinatorics, and complex analysis, as evidenced by the multitude of theorems and notations named for him.
 
Other important European mathematicians of the 18th century included [[Joseph Louis Lagrange]], who did pioneering work in number theory, algebra, differential calculus, and the calculus of variations, and [[Laplace]] who, in the age of [[Napoleon]] did important work on the foundations of [[celestial mechanics]] and on [[statistics]].
-->
 
== Abad ke-19 ==
<!--
[[Image:noneuclid.svg|right|thumb|400px|Behavior of lines with a common perpendicular in each of the three types of geometry]]
Throughout the 19th century mathematics became increasingly abstract. In the 19th century lived [[Carl Friedrich Gauss]] (1777–1855). Leaving aside his many contributions to science, in pure mathematics he did revolutionary work on [[function (mathematics)|function]]s of [[complex variable]]s, in [[geometry]], and on the convergence of [[series (mathematics)|series]]. He gave the first satisfactory proofs of the [[fundamental theorem of algebra]] and of the [[quadratic reciprocity law]].
 
This century saw the development of the two forms of [[non-Euclidean geometry]], where the [[parallel postulate]] of [[Euclidean geometry]] no longer holds.
The Russian mathematician [[Nikolai Ivanovich Lobachevsky]] and his rival, the Hungarian mathematician [[Janos Bolyai]], independently defined and studied [[hyperbolic geometry]], where uniqueness of parallels no longer holds. In this geometry the sum of angles in a triangle add up to less than 180°. [[Elliptic geometry]] was developed later in the 19th century by the German mathematician [[Bernhard Riemann]]; here no parallel can be found and the angles in a triangle add up to more than 180°. Riemann also developed [[Riemannian geometry]], which unifies and vastly generalizes the three types of geometry, and he defined the concept of a [[manifold]], which generalize the ideas of [[curve]]s and [[surface]]s.
The 19th century saw the beginning of a great deal of [[abstract algebra]]. [[Hermann Grassmann]] in Germany gave a first version of [[vector space]]s, [[William Rowan Hamilton]] in Ireland developed [[noncommutative algebra]]. The British mathematician [[George Boole]] devised an algebra that soon evolved into what is now called [[Boolean logic|Boolean algebra]], in which the only numbers were 0 and 1 and in which, 1&nbsp;+&nbsp;1&nbsp;=&nbsp;1. Boolean algebra is the starting point of [[mathematical logic]] and has important applications in [[computer science]].
 
[[Augustin-Louis Cauchy]], [[Bernhard Riemann]], and [[Karl Weierstrass]] reformulated the calculus in a more rigorous fashion.
 
Also, for the first time, the limits of mathematics were explored. [[Niels Henrik Abel]], a Norwegian, and [[Évariste Galois]], a Frenchman, proved that there is no general algebraic method for solving polynomial equations of degree greater than four. Other 19th century mathematicians utilized this in their proofs that straightedge and compass alone are not sufficient to [[trisect an arbitrary angle]], to construct the side of a cube twice the volume of a given cube, nor to construct a square equal in area to a given circle. Mathematicians had vainly attempted to solve all of these problems since the time of the ancient Greeks.
 
Abel and Galois's investigations into the solutions of various polynomial equations laid the groundwork for further developments of [[group theory]], and the associated fields of [[abstract algebra]]. In the 20th century physicists and other scientists have seen group theory as the ideal way to study [[symmetry]].
 
In the later 19th century, [[Georg Cantor]] established the first foundations of [[set theory]], which enabled the rigorous treatment of the notion of infinity and has become the common language of nearly all mathematics. Cantor's set theory, and the rise of [[mathematical logic]] in the hands of [[Peano]], [[L. E. J. Brouwer]], [[David Hilbert]], [[Bertrand Russell]], and [[A.N. Whitehead]], initiated a long running debate on the [[foundations of mathematics]].
 
The 19th century saw the founding of a number of national mathematical societies: the [[London Mathematical Society]] in 1865, the [[Société Mathématique de France]] in 1872, the [[Circolo Mathematico di Palermo]] in 1884, the [[Edinburgh Mathematical Society]] in 1883, and the [[American Mathematical Society]] in 1888.
-->
 
== Abad ke-20 ==
<!--
[[Image:Four Colour Map Example.svg|thumb|A map illustrating the [[Four Color Theorem]]]]
 
The 20th century saw mathematics become a major profession. Every year, thousands of new Ph.D.s in mathematics are awarded, and jobs are available in both teaching and industry. In earlier centuries, there were few creative mathematicians in the world at any one time. For the most part, mathematicians were either born to wealth, like [[John Napier|Napier]], or supported by wealthy patrons, like [[Gauss]]. A few, like [[Joseph Fourier|Fourier]], derived meager livelihoods from teaching in universities. [[Niels Henrik Abel]], unable to obtain a position, died in poverty of malnutrition and tuberculosis at the age of twenty-six.
 
As in most areas of study, the explosion of knowledge in the scientific age has led to specialization: there are now hundreds of specialized areas in mathematics and the latest [[Mathematics Subject Classification]] runs to 46 pages<ref>[http://www.ams.org/mathscinet/msc/pdfs/classification2010.pdf Mathematics Subject Classification 2010]</ref>. More and more [[mathematical journal]]s were published and, by the end of the century, the development of the [[world wide web]] led to online publishing.
 
In a 1900 speech to the [[International Congress of Mathematicians]], [[David Hilbert]] set out a list of [[Hilbert's problems|23 unsolved problems in mathematics]]. These problems, spanning many areas of mathematics, formed a central focus for much of 20th century mathematics. Today, 10 have been solved, 7 are partially solved, and 2 are still open. The remaining 4 are too loosely formulated to be stated as solved or not.
 
Notable historical conjectures were finally proved. In 1976, [[Wolfgang Haken]] and [[Kenneth Appel]] used a computer to prove the [[four color theorem]]. [[Andrew Wiles]], building on the work of others, proved [[Fermat's Last Theorem]] in 1995. [[Paul Cohen (mathematician)|Paul Cohen]] and [[Kurt Gödel]] proved that the [[continuum hypothesis]] is [[logical independence|independent]] of (could neither be proved nor disproved from) the [[ZFC|standard axioms of set theory]]. In 1998 [[Thomas Callister Hales]] proved the [[Kepler conjecture]].
 
Mathematical collaborations of unprecedented size and scope took place. An example is the [[classification of finite simple groups]] (also called the "enormous theorem"), whose proof between 1955 and 1983 required 500-odd journal articles by about 100 authors, and filling tens of thousands of pages. A group of French mathematicians, including [[Jean Dieudonné]] and [[André Weil]], publishing under the [[pseudonym]] "[[Nicolas Bourbaki]]," attempted to exposit all of known mathematics as a coherent rigorous whole. The resulting several dozen volumes has had a controversial influence on mathematical education.<ref>Maurice Mashaal, 2006. ''Bourbaki: A Secret Society of Mathematicians''. [[American Mathematical Society]]. ISBN 0-8218-3967-5, ISBN 978-0-8218-3967-6.</ref>
 
[[Differential geometry]] came into its own when [[Einstein]] used it in [[general relativity]]. Entire new areas of mathematics such as [[mathematical logic]], [[topology]], and [[John von Neumann]]'s [[game theory]] changed the kinds of questions that could be answered by mathematical methods. All kinds of [[Mathematical structure|structures]] were abstracted using axioms and given names like [[metric space]]s, [[topological space]]s etc. As mathematicians do, the concept of an abstract structure was itself abstracted and led to [[category theory]]. [[Grothendieck]] and [[Jean-Pierre Serre|Serre]] recast [[algebraic geometry]] using [[Sheaf (mathematics)|sheaf theory]]. Large advances were made in the qualitative study of [[dynamical systems theory|dynamical systems]] that [[Poincaré]] had began in the 1890s. [[Measure theory]] was developed in the late 19th and early 20th century. Applications of measures include the [[Lebesgue integral]], [[Kolmogorov]]'s axiomatisation of [[probability theory]], and [[ergodic theory]]. [[Knot theory]] greatly expanded. Other new areas include [[functional analysis]], [[Laurent Schwarz]]'s [[Distribution (mathematics)|distribution theory]], [[fixed point theory]], [[singularity theory]] and [[René Thom]]'s [[catastrophe theory]], [[model theory]], and [[Mandelbrot]]'s [[fractals]].
 
The development and continual improvement of [[computer]]s, at first mechanical analog machines and then digital electronic machines, allowed [[industry]] to deal with larger and larger amounts of data to facilitate mass production and distribution and communication, and new areas of mathematics were developed to deal with this: [[Alan Turing]]'s [[computability theory]]; [[Computational complexity theory|complexity theory]]; [[Claude Shannon]]'s [[information theory]]; [[signal processing]]; [[data analysis]]; [[optimization (mathematics)|optimization]] and other areas of [[operations research]]. In the preceding centuries much mathematical focus was on [[calculus]] and continuous functions, but the rise of computing and communication networks led to an increasing importance of [[discrete mathematics|discrete]] concepts and the expansion of [[combinatorics]] including [[graph theory]]. The speed and data processing abilities of computers also enabled the handling of mathematical problems that were too time-consuming to deal with by pencil and paper calculations, leading to areas such as [[numerical analysis]] and [[symbolic computation]].
 
At the same time, deep insights were made about the limitations to mathematics. In 1929 and 1930, it was proved the truth or falsity of all statements formulated about the [[natural number]]s plus one of addition and multiplication, was [[decidable]], i.e. could be determined by algorithm. In 1931, [[Kurt Gödel]] found that this was not the case for the natural numbers plus both addition and multiplication; this system, known as [[Peano arithmetic]], was in fact [[incompleteness theorem|incompletable]]. (Peano arithmetic is adequate for a good deal of [[number theory]], including the notion of [[prime number]].) A consequence of Gödel's two [[incompleteness theorem]]s is that in any mathematical system that includes Peano arithmetic (including all of [[mathematical analysis|analysis]] and [[geometry]]), truth necessarily outruns proof, i.e. there are true statements that [[Incompleteness theorem|cannot be proved]] within the system. Hence mathematics cannot be reduced to mathematical logic, and [[David Hilbert]]'s dream of making all of mathematics complete and consistent died.
 
One of the more colorful figures in 20th century mathematics was [[Srinivasa Aiyangar Ramanujan]] (1887–1920) who, despite being largely self-educated, conjectured or proved over 3000 theorems, including properties of [[highly composite number]]s, the [[partition function (number theory)|partition function]] and its [[asymptotics]], and [[Ramanujan theta function|mock theta functions]]. He also made major investigations in the areas of [[gamma function]]s, [[modular form]]s, [[divergent series]], [[hypergeometric series]] and [[prime number theory]].
 
[[Paul Erdős]] published more papers than any other mathematician in history, working with hundreds of collaborators. Mathematicians have a game equivalent to the [[Kevin Bacon Game]], which leads to the [[Erdős number]] of a mathematician. This describes the "collaborative distance" between a person and Paul Erdős, as measured by joint authorship of mathematical papers.
-->
 
== Abad ke-21 ==
<!--
In 2000, the [[Clay Mathematics Institute]] announced the [[Millennium Prize Problems]], and in 2003 the [[Poincaré conjecture]] was solved by [[Grigori Perelman]].
 
Most mathematical journals now have online versions as well as print versions, and many online-only journals are launched. There is an increasing drive towards [[Open access (publishing)|open access publishing]], first popularized by the [[arXiv]].
 
Beginning in the late 20th century, but particularly in the 21st, mathematical research has become a global endeavor, such that it doesn't make much sense to speak of "ethnic" schools (e.g. Greek, Indian, etc...) of mathematics anymore.
-->
 
== Lihat pula ==
<!--
*[[List of important publications in mathematics]]
*[[History of algebra]]
*[[History of calculus]]
*[[History of combinatorics]]
*[[History of geometry]]
*[[History of logic]]
*[[History of mathematical notation]]
*[[History of statistics]]
*[[History of trigonometry]]
*[[History of writing numbers]]
-->
 
== Referensi ==
Baris 263 ⟶ 111:
 
== Bacaan lanjutan ==
<!--
<div class="references-2column">
* {{cite book
| last = Aaboe
| first = Asger
| year = 1964
| title = Episodes from the Early History of Mathematics
|url = https://archive.org/details/episodesfromearl0000asge
| publisher = Random House
|publisher = Random House
| location = New York
|location = New York
}}
* Boyer, C. B., ''A History of Mathematics'', 2nd ed. rev. by Uta C. Merzbach. New York: Wiley, 1989 ISBN 0-471-09763-2 (1991 pbk ed. ISBN 0-471-54397-7).
* Eves, Howard, ''An Introduction to the History of Mathematics'', Saunders, 1990, ISBN 0-03-029558-0,
* [[Paul Hoffman (science writer)|Hoffman, Paul]], ''The Man Who Loved Only Numbers: The Story of [[Paul Erdős]] and the Search for Mathematical Truth''. New York: Hyperion, 1998 ISBN 0-7868-6362-5.
* {{cite book|first=Ivor|last=Grattan-Guinness|title=Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences|url=https://archive.org/details/companionencyclo0000unse_w7v1|publisher=The Johns Hopkins University Press|year=2003|isbn=0801873975}}
* van der Waerden, B. L., ''Geometry and Algebra in Ancient Civilizations'', Springer, 1983, ISBN 0-387-12159-5.
* O'Connor, John J. and Robertson, Edmund F. ''[http://www-groups.dcs.st-andrews.ac.uk/~history/ The MacTutor History of Mathematics Archive] {{Webarchive|url=https://web.archive.org/web/20070927231020/http://www-groups.dcs.st-andrews.ac.uk/~history/ |date=2007-09-27 }}''. This website contains biographies, timelines and historical articles about mathematical concepts; at the School of Mathematics and Statistics, [[University of St. Andrews]], Scotland. (Or see the [http://www-gap.dcs.st-and.ac.uk/~history/Indexes/Hist_Topics_alph.html alphabetical list of history topics] {{Webarchive|url=https://web.archive.org/web/20110809094906/http://www-gap.dcs.st-and.ac.uk/~history/Indexes/Hist_Topics_alph.html |date=2011-08-09 }}.)
* {{cite book| last = Stigler| first = Stephen M.| authorlink = Stephen Stigler| year = 1990| title = The History of Statistics: The Measurement of Uncertainty before 1900| publisher = Belknap Press | isbn = 0-674-40341-X}}
* {{cite book
| last = Bell
| first = E.T.
| title = Men of Mathematics
|url = https://archive.org/details/menofmathematics0041bell
| publisher = Simon and Schuster
|publisher = Simon and Schuster
| year = 1937
|year = 1937
}}
* {{cite book
| last = Gillings
| first = Richard J.
| title = Mathematics in the time of the pharaohs
|url = https://archive.org/details/mathematicsintim0000gill_o9t9
| publisher = M.I.T. Press
|publisher = M.I.T. Press
| location = Cambridge, MA
|location = Cambridge, MA
| year = 1972
|year = 1972
}}
* {{cite book
| last = Heath
| first = Sir Thomas
| title = A History of Greek Mathematics
|url = https://archive.org/details/historyofgreekma0001heat
| publisher = Dover
| yearpublisher = 1981Dover
|year = 1981
|isbn = 0-486-24073-8
}}
* {{cite book
| last = Menninger
| first = Karl W.
| year = 1969
| title = Number Words and Number Symbols: A Cultural History of Numbers
|url = https://archive.org/details/numberwordsnumbe00menn
| publisher = MIT Press
|publisher = MIT Press
| isbn = 0-262-13040-8
|isbn = 0-262-13040-8
}}
* Burton, David M. ''The History of Mathematics: An Introduction''. McGraw Hill: 1997.
* Katz, Victor J. ''A History of Mathematics: An Introduction'', 2nd Edition. [[Addison-Wesley]]: 1998.
* Kline, Morris. ''Mathematical Thought from Ancient to Modern Times''.
* {{Citation
| year=2007
| editor1-last=Katz
Baris 324 ⟶ 176:
| isbn=0691114854
}}.
* {{Citation
| last1=Plofker
| first1=Kim
Baris 334 ⟶ 186:
}}.
</div>
-->
 
== Pranala luar ==
* [http://www-history.mcs.st-andrews.ac.uk/ MacTutor History of Mathematics archive] (John J. O'Connor and Edmund F. Robertson; University of St Andrews, Scotland). An award-winning website containing detailed biographies on many historical and contemporary mathematicians, as well as information on notable curves and various topics in the history of mathematics.
<!--
* [http://www-historyaleph0.mcsclarku.st-andrews.ac.ukedu/~djoyce/mathhist/ MacTutor History of Mathematics archiveHome Page] (JohnDavid JE. O'ConnorJoyce; and Edmund F. Robertson;Clark University of St Andrews, Scotland). An award-winning website containing detailed biographiesArticles on many historical and contemporary mathematicians, as well as information on notable curves and various topics in the history of mathematics with an extensive bibliography.
* [http://aleph0www.clarkumaths.edutcd.ie/~djoycepub/mathhistHistMath/ The History of Mathematics Home Page] (David ER. JoyceWilkins; ClarkTrinity UniversityCollege, Dublin). ArticlesCollections onof variousmaterial topics inon the historymathematics ofbetween mathematicsthe with17th anand extensive19th bibliographycentury.
* [http://www.math.sfu.ca/histmath/ History of Mathematics] {{Webarchive|url=https://web.archive.org/web/20080116223614/http://www.math.sfu.ca/histmath/ |date=2008-01-16 }} (Simon Fraser University).
*[http://www.maths.tcd.ie/pub/HistMath/ The History of Mathematics] (David R. Wilkins; Trinity College, Dublin). Collections of material on the mathematics between the 17th and 19th century.
* [http://jeff560.tripod.com/mathword.html Earliest Known Uses of Some of the Words of Mathematics] (Jeff Miller). Contains information on the earliest known uses of terms used in mathematics.
*[http://www.math.sfu.ca/histmath/ History of Mathematics] (Simon Fraser University).
* [http://jeff560.tripod.com/mathwordmathsym.html Earliest Known Uses of SomeVarious of the Words ofMathematical MathematicsSymbols] (Jeff Miller). Contains information on the earliest known useshistory of terms used inmathematical mathematicsnotations.
* [http://www.economics.soton.ac.uk/staff/aldrich/Mathematical%20Words.htm Mathematical Words: Origins and Sources] (John Aldrich, University of Southampton) Discusses the origins of the modern mathematical word stock.
*[http://jeff560.tripod.com/mathsym.html Earliest Uses of Various Mathematical Symbols] (Jeff Miller). Contains information on the history of mathematical notations.
* [http://www.agnesscott.edu/lriddle/women/women.htm Biographies of Women Mathematicians] (Larry Riddle; Agnes Scott College).
*[http://www.economics.soton.ac.uk/staff/aldrich/Mathematical%20Words.htm Mathematical Words: Origins and Sources] (John Aldrich, University of Southampton) Discusses the origins of the modern mathematical word stock.
* [http://www.agnesscottmath.buffalo.edu/lriddlemad/women/women.htm BiographiesMathematicians of Womenthe MathematiciansAfrican Diaspora] (LarryScott W. RiddleWilliams; AgnesUniversity Scottat CollegeBuffalo).
* [http://www.dean.usma.edu/math/people/rickey/hm/ Fred Rickey's History of Mathematics Page] {{Webarchive|url=https://web.archive.org/web/20120912162648/http://www.dean.usma.edu/math/people/rickey/hm/ |date=2012-09-12 }}
*[http://www.math.buffalo.edu/mad/ Mathematicians of the African Diaspora] (Scott W. Williams; University at Buffalo).
* [http://astech.library.cornell.edu/ast/math/find/Collected-Works-of-Mathematicians.cfm A Bibliography of Collected Works and Correspondence of Mathematicians] (Steven W. Rockey; Cornell University Library).
*[http://www.dean.usma.edu/math/people/rickey/hm/ Fred Rickey's History of Mathematics Page]
* [http://www.mathourism.com Mathourism - Places with a mathematical historic interest] {{Webarchive|url=https://web.archive.org/web/20181107125905/http://mathourism.com/ |date=2018-11-07 }}
*[http://astech.library.cornell.edu/ast/math/find/Collected-Works-of-Mathematicians.cfm A Bibliography of Collected Works and Correspondence of Mathematicians] (Steven W. Rockey; Cornell University Library).
*[http://www.mathourism.com Mathourism - Places with a mathematical historic interest]
-->
 
=== Jurnal ===
* [https://web.archive.org/web/20060212072618/http://mathdl.maa.org/convergence/1/ Convergence], Majalah Sejarah Matematika online yang dikelola oleh [[Mathematical Association of America]]
 
=== Direktori ===
* [http://www.dcs.warwick.ac.uk/bshm/resources.html Links to Web Sites on the History of Mathematics] (The British Society for the History of Mathematics)
<!--
* [http://archives.math.utk.edu/topics/history.html History of Mathematics] {{Webarchive|url=https://web.archive.org/web/20061004065105/http://archives.math.utk.edu/topics/history.html |date=2006-10-04 }} Math Archives (University of Tennessee, Knoxville)
*[http://www.dcs.warwick.ac.uk/bshm/resources.html Links to Web Sites on the History of Mathematics] (The British Society for the History of Mathematics)
* [http://archivesmathforum.math.utk.eduorg/library/topics/history.html/ History/Biography] of Mathematics]The Math ArchivesForum (Drexel University of Tennessee, Knoxville)
* [http://www.otterbein.edu/resources/library/libpages/subject/mathhis.htm History of Mathematics] {{Webarchive|url=https://web.archive.org/web/20020716102307/http://www.otterbein.edu/resources/library/libpages/subject/mathhis.htm |date=2002-07-16 }} (Courtright Memorial Library).
*[http://mathforum.org/library/topics/history/ History/Biography] The Math Forum (Drexel University)
* [http://wwwhomepages.otterbeinbw.edu/resources~dcalvis/library/libpages/subject/mathhishistory.htmhtml History of Mathematics Web Sites] (CourtrightDavid MemorialCalvis; LibraryBaldwin-Wallace College).
* {{dmoz|Science/Math/History|History of mathematics}}
*[http://homepages.bw.edu/~dcalvis/history.html History of Mathematics Web Sites] (David Calvis; Baldwin-Wallace College)
* [http://webpages.ull.es/users/jbarrios/hm/ Historia de las Matemáticas] {{Webarchive|url=https://web.archive.org/web/20030219004407/http://webpages.ull.es/users/jbarrios/hm/ |date=2003-02-19 }} (Universidad de La La guna)
*{{dmoz|Science/Math/History|History of mathematics}}
* [http://webpageswww.ullmat.esuc.pt/users/jbarrios/hm~jaimecs/indexhm.html HistoriaHistória deda las MatemáticasMatemática] (UniversidadUniversidade de La La gunaCoimbra)
* [http://www.matmath.ucilstu.ptedu/~jaimecsmarshall/indexhm.html HistóriaUsing daHistory Matemática]in (UniversidadeMath de Coimbra)Class]
* [http://www.abc.se/~m9847/matre/history.html Mathematical Resources: History of Mathematics] {{Webarchive|url=https://web.archive.org/web/20081005023027/http://www.abc.se/~m9847/matre/history.html |date=2008-10-05 }} (Bruno Kevius)
*[http://www.math.ilstu.edu/marshall/ Using History in Math Class]
* [http://www.abcdm.seunipi.it/~m9847tucci/matre/historyindex.html Mathematical Resources: History of Mathematics] {{Webarchive|url=https://web.archive.org/web/20080615051823/http://www.dm.unipi.it/~tucci/index.html |date=2008-06-15 }} (BrunoRoberta KeviusTucci)
 
*[http://www.dm.unipi.it/~tucci/index.html History of Mathematics] (Roberta Tucci)
{{Bidang matematika}}
-->
{{Matematika Islam}}
 
{{Authority control}}
[[Kategori:Wikipediawan yang bergabung bulan Juni 2010]]
[[Kategori:Wikipediawan yang bergabung bulan Juni 2010]]
[[Kategori:Wikipediawan yang bergabung bulan Juni 2010]]
[[Kategori:Wikipediawan yang bergabung bulan Juni 2010]]
[[Kategori:Wikipediawan yang bergabung bulan Juni 2010]]
[[Kategori:Matematika| ]]
 
[[Kategori:Matematika| Sejarah]]
{{Link FA|nl}}
[[Kategori:Sejarah ilmu menurut disiplin]]
{{Link FA|no}}
 
[[as:গণিত#গণিতৰ ইতিহাস]]
[[ar:تاريخ الرياضيات]]
[[as:গিণতৰ ইিতহাস]]
[[bg:История на математиката]]
[[bn:গণিতের ইতিহাস]]
[[ca:Història de les matemàtiques]]
[[cs:Dějiny matematiky]]
[[da:Matematikkens historie]]
[[de:Geschichte der Mathematik]]
[[en:History of mathematics]]
[[eo:Historio de matematiko]]
[[es:Historia de la matemática]]
[[fi:Matematiikan historia]]
[[fr:Histoire des mathématiques]]
[[he:היסטוריה של המתמטיקה]]
[[hi:गणित का इतिहास]]
[[hu:A matematika története]]
[[it:Storia della matematica]]
[[ja:数学史]]
[[ko:수학의 역사]]
[[lt:Matematikos istorija]]
[[ml:ഗണിതത്തിന്റെ ഉത്ഭവം]]
[[nl:Geschiedenis van de wiskunde]]
[[no:Matematikkens historie]]
[[nov:Historie de matematike]]
[[pl:Historia matematyki]]
[[pt:História da matemática]]
[[ro:Istoria matematicii]]
[[ru:История математики]]
[[sl:Zgodovina matematike]]
[[sq:Historia e matematikës shqiptare]]
[[sr:Историја математике]]
[[su:Sajarah matematik]]
[[sv:Matematikens historia]]
[[te:గణిత శాస్త్ర చరిత్ర]]
[[uk:Історія математики]]
[[ur:تاریخ ریاضی]]
[[vi:Lịch sử toán học]]
[[zh:数学史]]