Logam tanah jarang: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
|||
(41 revisi perantara oleh 24 pengguna tidak ditampilkan) | |||
Baris 1:
{{rapikan}}
[[
[[
'''Logam tanah jarang''' (LTJ) atau '''unsur logam langka''' adalah kumpulan 17 [[unsur kimia]] pada [[tabel periodik]], terutama 15 [[lantanida]] ditambah [[skandium]] dan [[
Meskipun namanya logam
== Daftar ==▼
Berikut ini adalah daftar 17 logam tanah jarang, nomor atom beserta simbol, asal namanya, dan penggunaan utama dari logam tersebut (lihat juga [[Lantanida#Aplikasi teknologi|aplikasi teknologinya]] disini. Beberapa logam-logam ini dinamai dari ilmuwan yang menemukannya, dan beberapa lagi diambil dari tempat
▲==Daftar==
▲Berikut ini adalah daftar 17 logam tanah jarang, nomor atom beserta simbol, asal namanya, dan penggunaan utama dari logam tersebut (lihat juga [[Lantanida#Aplikasi teknologi|aplikasi teknologinya]] disini. Beberapa logam-logam ini dinamai dari ilmuwan yang menemukannya, dan beberapa lagi diambil dari tempat dimana logam tersebut tidak pernah ditemukan.
{| class="wikitable sortable"
!''[[Nomor atom|Z]]''
!Simbol
! class="unsortable"|Nama
! class="unsortable"|Etimologi
!
|-
|21
|Sc
|[[Skandium]]
|dari bahasa [[Latin]] ''Scandia'' ([[Skandinavia]]), tempat
|[[Campuran aluminium-skandium]] ringan yang dipakai untuk komponen pesawat terbang dan aditif untuk [[Lampu uap-merkuri]].<ref name="CRC_ed89_elements">C. R. Hammond, "Section 4; The Elements", in ''CRC Handbook of Chemistry and Physics, 89th Edition (Internet Version 2009), David R. Lide, ed., CRC Press/Taylor and Francis, Boca Raton, FL.</ref>
|-
|39
|Y
|[[
|dinamai dari [[:en:Ytterby|Ytterby]], [[Swedia]], tempat logam ini pertama ditemukan.
|Laser
|-
|57
Baris 35 ⟶ 33:
|[[Lantanum]]
|dari bahasa Yunani "lanthanein", artinya ''tersembunyi''.
|Kaca dengan [[indeks refraktif]] tinggi, penyimpanan hidrogen,
|-
|58
Baris 41 ⟶ 39:
|[[Serium]]
|diambil dari nama salah satu planet katai [[Ceres (planet katai)|Ceres]], dari nama Dewi Pertanian Romawi.
|[[Agen oksidasi]] kimia, bubuk pemoles, pewarna kuning pada kaca dan keramik, katalis untuk [[oven ''self-cleaning'']], katalis [[''cracking'' katalitik cairan]] pada kilang minyak, [[feroserium]]
|-
|59
Baris 53 ⟶ 51:
|[[Neodimium]]
|dari bahasa Yunani "neos" (baru) dan "didymos" (kembar).
|[[Magnet tanah jarang]], [[laser]], pewarna ungu pada kaca dan keramik, [[kapasitor keramik]], kaca [[didimium]]
|-
|61
Baris 59 ⟶ 57:
|[[Prometium]]
|dari mitologi [[Titan (mitologi)|Titan]] [[Prometheus]].
|[[Baterai atom|Baterai nuklir]], [[cat berpendar]]
|-
|62
|Sm
|[[Samarium]]
|dinamai dari [[:en:Vassili Samarsky-Bykhovets|Vasili Samarsky-Bykhovets]], yang menemukan bijih tanah jarang [[samarskit]].
|[[Magnet tanah jarang]], [[laser]], [[penangkap neutron]], [[maser]]
|-
Baris 76 ⟶ 74:
|Gd
|[[Gadolinium]]
|dinamai dari [[:en:Johan Gadolin|Johan Gadolin]] (1760–1852), sebagai persembahan atas dedikasinya pada logam tanah jarang.
|[[Magnet tanah jarang]], [[laser]], kaca dengan indeks refraktif tinggi atau [[garnet]], [[tabung X-ray]], [[memori komputer]], [[penangkap neutron]], [[agen kontras MRI]], agen relaksasi [[NMR]]
|-
Baris 82 ⟶ 80:
|Tb
|[[Terbium]]
|dinamai dari desa Ytterby, [[Swedia]].
|Tambahan pada [[
|-
|66
Baris 89 ⟶ 87:
|[[Disprosium]]
|dari bahasa Yunani "dysprositos" (susah untuk didapatkan).
|Tambahan pada [[Magnet neodimium|magnet berbasis neodimium]], [[laser]], [[logam paduan magnetostriktif]] seperti [[terfenol-D]], [[cakram keras]]
|-
|67
Baris 95 ⟶ 93:
|[[Holmium]]
|dinamai dari kota [[Stockholm]] (dalam bahasa Latin, "Holmia"), kota dari salah satu penemunya.
|[[Laser]], standar kalibrasi panjang gelombang untuk [[spektrofotometer]] optik, magnet
|-
|68
Baris 101 ⟶ 99:
|[[Erbium]]
|dinamai dari desa Ytterby, Swedia.
|[[Laser]], [[baja vanadium]], teknologi [[serat optik]]
|-
|69
|Tm
|[[
|diambil dari asal usul [[:en:Thule|Thule]].
|[[Mesin X-ray]] jinjing, [[Lampu halida logam|lampu halida-logam]], [[laser]]
|-
|70
Baris 113 ⟶ 111:
|[[Ytterbium]]
|dinamai dari desa Ytterby, Swedia.
|[[Laser]] inframerah, [[agen pereduksi]] kimia, [[Suar|suar pengecoh]], [[baja nirkarat]]
|-
|71
|Lu
|[[
|diambil dari nama [[Lutetia]], kota yang berganti nama menjadi [[Paris]].
|Detektor pemindai [[Tomografi emisi positron|PET]], kaca dengan indeks refraktif tinggi, [[lampu LED]]
|}
== Sejarah ==
Kelompok logam ini pertama kali ditemukan pada tahun 1787 oleh seorang letnan angkatan bersenjata [[Swedia]] bernama
Penemuan unsur baru ini, tentunya memicu penelitian yang membuahkan penemuan unsur-unsur logam tanah jarang lain.
* Tahun 1804 Klaproth dan rekan-rekannya menemukan seria yang merupakan bentuk oksida dari Serium.
* Tahun 1828, Belzerius memperoleh mineral thoria dari mineral
* Tahun 1842 Mosander memisahkan senyawa bernama yttria menjadi tiga macam unsur melalui
* Tahun 1879, berkat petunjuk
* Tahun 1885, Welsbach memisahkan praseodimium dan neodimium yang terdapat pada samarium
* Tahun 1886, Boisbaudran memperoleh [[gadolinium]] dari mineral Ytterbia yang diperoleh J.C.G de Marignac tahun 1880
* Pada 1907 dari Ytterbia yang diperoleh
== Sumber ==
Logam tanah jarang tidak ditemukan berupa unsur bebas dalam lapisan kerak bumi. Namun ia berbentuk paduan membentuk senyawa kompleks. Sehingga logam tanah harus dipisahkan terlebih dahulu dari senyawa kompleks tersebut.
Secara umum, logam tanah jarang ditemukan dalam bentuk senyawa kompleks [[fosfat]] dan [[karbonat]]. Di bawah ini adalah beberapa contoh mineral logam tanah jarang yang ditemukan di alam
▲** '''Bastnaesit (CeFCO<sub>3</sub>)'''. Merupakan sebuah fluoro-carbonate serium yang mengandung 60–70% Oksida logam tanah jarang seperti Lanthanum and Neodymium. Mineral bastnaesit merupakan sumber logam tanah jarang yang utama di dunia. Bastnaesit dtemukan dalam batuan [[kabonatit]], [[dolomit breccia]], [[pegmatit]] dan [[amphibole skarn]].
▲** '''Monazit ((Ce,La,Y,Th)PO<sub>3</sub>)''' Merupakan senyawa fosfat logam tanah jarang yang mengandung 50-70% Oksida LTJ. Monasit diambil dari mineral pasir berat yang merupakan hasil samping dari senyawa logam berat lain. Monasit memiliki kandungan thorium yang cukup tinggi. Sehingga mineral tersebut memiliki sifat radioaktif. Thorium tersebut memancarkan radiasi pengion. Monasite dalam jumlah tertentu dikategorikan sebagai TENORM (Technologically Enhanced Naturally Occuring Radioactive Material) yaitu zat radioaktif alam yang dikarenakan kegiatan manusia atau proses teknologi terjadi peningkatan paparan potensial jika dibandingkan dengan keadaan awal, penanganan TENORM mesti mematuhi batasan paparan radiasi sebagai berikut: Paparan pekerja 20 mSv/th atau 10 uSv/jam dan Paparan publik 1 mSv/th.
▲** '''Xenotime (YPO<sub>4</sub>)''' merupakan senyawa ittrium phosphat yang mengandung 54-65% LTJ termasuk erbium, cerium dan thorium. Xenotipe juga mineral yang ditemukan dalam mineral pasir berat seperti pegmatite dan batuan leleh (igneous rocks)
Dalam memperoleh mineral di atas,
▲** '''zircon''', merupakan senyawa a zirconium silicate yang didalamnya ditemukan thorium, ittrium dan cerium.
▲Dalam memperoleh mineral di atas, tidak bisa didapatkan dengan mudah. Karena jumlah mineral tersebut sangat terbatas. Telebih lagi, mineral di atas tidak terpisah sendiri,tetapi ia tercampur dengan mineral lain. Seperti contohnya pada kepulauan bangka Belitung, mineral ini merupakan hasil samping dari penambangan timah. Sehingga sebelum memperoleh mineral di atas, maka diperlukan proses pemisahan terlebih dahulu.
Mineral-mineral yang mendominasi dalam senyawa logam tanah jarang di atas adalah Lanthanum, Cerium, Neodymium. Sehingga mineral ini, menjadi ekonomis untuk dilakukan proses ekstraksi. Sehingga pemanfaatan ketiga mineral ini, sangat tinggi dibanding mineral logam tanah jarang lainnya.
Logam tanah jarang telah banyak digunakan pada berbagai macam produk. Penggunaan logam tanah jarang ini memicu berkembangnya material baru. Material baru dengan menggunakan Logam Tanah Jarang memberikan perkembangan teknologi yang cukup signifikan dalam ilmu material. Perkembangan material ini banyak diaplikasikan di dalam industri untuk
▲==== Aplikasi logam tanah jarang ====
▲Logam tanah jarang telah banyak digunakan pada berbagai macam produk. Penggunaan logam tanah jarang ini memicu berkembangnya material baru. Material baru dengan menggunakan Logam Tanah Jarang memberikan perkembangan teknologi yang cukup signifikan dalam ilmu material. Perkembangan material ini banyak diaplikasikan di dalam industri untuk meningkatkan kualitas produk mereka. Contoh perkembangan yang terjadi pada magnet. Logam Tanah Jarang mampu menghasilkan neomagnet, yaitu magnet yang memiliki medan magnet yang lebih baik dari pada magnet biasa. Sehingga memungkinkan munculnya perkembangan teknologi berupa penurunan berat dan volume speaker yang ada. Memungkinkan munculnya dinamo yang lebih kuat sehingga mampu mengerakkan mobil. Sehingga dengan adanya logam tanah jarang, memungkinkan munculnya mobil bertenaga listrik yang dapat digunakan untuk perjalanan jauh. Oleh karenanya mobil hybrid mulai marak dikembangkan.
Dalam aplikasi metalurgi, penambahan logam tanah jarang digunakan dalam pembuatan Baja High Strength, low alloy (HSLA), baja karbon tinggi, superalloy, stainless steel. Karena logam tanah jarang memiliki kemampuan untuk meningkatkan kemampuan material berupa kekuatan, kekerasan dan peningkatan ketahanan terhadap panas. Contohnya pada penambahan logam tanah jarang dalam bentuk additif atau alloy pada paduan magnesiaum dan alumunium, maka kekuatan dan kekerasan paduan tersebut akan meningkat dengan signifikan.
Baris 159 ⟶ 154:
Pemanfaatan logam tanah jarang yang lain berupa pelat armor, korek gas otomatis, lampu keamanan di pertambangan, perhiasan, cat, lem. Untuk instalasi nuklir, logam tanah jarang digunakan dalam detektor nuklir dan pengkounter, rod kontrol nuklir.
Walaupun kita jarang mendengar nama logam tanah jarang, pemanfaatannya sudah sangat banyak di dunia industri. Berbagai macam pemanfaatan dari logam tanah jarang, menyatakan bahwa material ini merupakan material masa depan. Karena material ini menjadi pemicu lahirnya teknologi baru yang masih akan terus berkembang seperti LCD, magnet dan baterai hybrid. Hal ini mengakibatkan permintaan logam tanah jarang yang akan terus meningkat. Berdasarkan penelitian pasar oleh BBC report untuk Lynas Co. menyatakan bahwa permintaan logam tanah jarang akan terus meningkat hingga menjadi 10% pada tahun 2010 . Sehingga industri logam tanah jarang menjadi sebuah industri yang menjanjikan yang akan terus berkembang di masa depan.
Baris 165 ⟶ 160:
Logam Tanah Jarang juga bersifat tidak tergantikan. Hal ini disebabkan sifat Logam Tanah Jarang yang unik. Sehingga sampai saat ini, tidak ada material lain yang mampu menggantikannya. Jika ada, kemampuan yang dihasilkan tidak sebaik material logam tanah jarang. Sifat logam tanah jarang yang digunakan sebagai material berteknologi tinggi dan belum ada penggantinya, membuat logam tanah jarang manjadi material yang vital
Negara Tiongkok merupakan produsen utama logam tanah jarang di dunia. Tahun 2005, mereka mampu memproduksi 43,000,000 ton. Kapasitas produksi ini merupakan 50% dari produksi logam tanah jarang dunia. Perkembangan logam Tanah jarang di [[Tiongkok|China]] dimulai sejak tahun 1985. Saat itu, [[Tiongkok|China]] sudah berhasil mengolah dua deposit logam tanah jarangnya. Depositnya di bayan Obo yang megandung iron-niobium-LTJ. Sehingga setelah mereka melakukan pemisahan besi dan niobium, maka didapatkan logam tanah jarang. Mereka mengolah Logam Tanah Jarang tersebut sehingga dapat dimanfaatkan.
Selanjutnya, dengan produksi logam tanah jarang yang besar tersebut, [[Tiongkok|China]] mampu mendorong pertumbuhan teknologi industrinya. Kemudian dia mulai mendirikan industri elektronik nasional yang dapat bersaing dengan industri elektronik luar dengan kemampuannya menggunakan material Logam Tanah Jarang. Saat ini, [[Tiongkok|China]] tidak hanya menguasai pasar barang elektronik seperti komponen komputer, televisi, monitor dan handycam. Tapi hampir semua lini industri dengan harga yang sangat kompetitif. Seperti industri baja, otomotif dan manufaktur lainnya.
Potensi besar dari logam tanah jarang tersebut akan sangat menguntungkan jika Indonesia turut serta untuk mengembangkannya. Terlebih lagi, pasir monasite sebagai sumber logam tanah jarang, hanya dijadikan sebagai sampah pembuangan timah. Sehingga sangat luar biasa keuntungan yang didapat, ketika sampah dijadikan material yang jika dilakukan pemprosesan lanjut memiliki nilai jual yang melebihi emas.
Baris 182 ⟶ 177:
Lantanida tertentu membentuk ion-ion +2 atau +4. Ion +2 mudah dioksidasi dan ion +4 mudah direduksi menjadi +3. Penjelasan yang sederhana bagi keberadaan valensi ini adalah bahwa kulit yang kosong terisi setengah atau terisi penuh sangat stabil. Fenomena yang mirip ini berhubungan dengan entalpi pengionan unsur deret transisi pertama dan kulit 3''d'' yang terisi setengah menjadi penyebab atas kestabilan mangan (II). Bagi lantanida, tingkat oksidasi IV untuk cerium memberikan Ce<sup>4+</sup> dengan konfigurasi kulit ''f'' yang kosong dari ''f''<sup>14</sup>. Konfigurasi ''f''<sup>7</sup> yang terisi setengah dari Gd<sup>3+</sup> dibentuk oleh reduksi menghasilkan Eu<sup>2+</sup> atau oksidasi menghasilkan Tb<sup>4+</sup>. Faktor-faktor lain yang terlibat, dengan demikian diperlihatkan oleh adanya banyak ion +2 yang distabilkan dalam kisi CaF<sub>2</sub> dan Kompleks Pr<sup>4+</sup> dan Nd<sup>4+</sup>.
=== Sifat magnetik dan spektra ===
Ion lantanida yang memiliki elektron tidak berpasangan berwarna dan [[paramagnet]]. Terdapat perbedaan mendasar dari unsur grup ''d'' dalam hal bahwa elektron-elektron 4''f'' adalah elektron dalam dan terlindung sangat efektif dari pengaruh gaya luar oleh tumpukan kulit 5''s''<sup>2</sup> dan 5''p''<sup>6</sup>. Dengan demikian, hanya terdapat pengaruh yang benar-benar lemah dari medan ligan
=== Bilangan Koordinasi dan [[Stereokimia]] ===
Hal ini adalah kekhasan ion M<sup>3+</sup> bahwa bilangan koordinasi lebih dari enam adalah biasa. Sangat sedikit unsur terkoordinasi enam diketahui, namun bilangan koordinasi 7,8,9 adalah penting. Dalam ion [Ce(NO<sub>3</sub>)<sub>6</sub>]<sup>2-</sup>, Ce dikelilingi oleh 12 atom oksigen dari gugus khelat NO<sub>3</sub>.
Penurunan jari-jari dari La ke Lu juga memeliki pengaruh bahwa struktur kristal yang berbeda dan bilangan koordinasi yang berbeda dapat terjadi untuk bagian-bagian yang berbeda dari golongan lantanida. Sebagai contoh, atom logam dalam triklorida La-Gd terkoordinasi 9, sedangkan klorida dari
== Keberadaan dan cara mengisolasinya ==
Baris 193 ⟶ 188:
'''Skandium''' adalah unsur yang sangat biasa yang melimpah seperti As dan dua kali kelimpahan Boron. Meskipun demikian, ia tidak mudah tersedia, sebagian disebabkan oleh langkanya bijih yang kaya, dan sebagian lainnya karena sulitnya dalam pemisahannya. Ia mungkin dipisahkan dari Y dan lantanida yang mungkin bergabung dengan mineral Sc dengan cara penukar –kation yang menggunakan asam oksalat sebagai pengelusi.
Unsur-unsur lantanida, termasuk La dan Y, mula-mula dikenal sebagai Unsur Tanah jarang-keberadaannnya dalam campuran oksida. Mereka sebenarnya bukan unsur-unsur jarang dan juga kelimpahannya absolutnya relatif tinggi. Jadi, walaupun yang paling langka, Tm adalah sama umumnya dengan Bi, dan lebih umum daripada As, Cd, Hg atau Se. Sumber utamanya adalah mineral '''[[monazite]]''', pasir gelap yang berat dengan komposisi beragam. Monazite sesungguhnya adalah lantanida ortofosfat, tetapi dapat mengandung sampai 30% thorium. La, Ce, Pr dan Nd biasanya terdapat sebanyak 90% kandungan lantanida suatu mineral dengan Y dan unsur-unsur yang lebih berat sebagai sisanya. Mineral yang mengandung lanthanida dalam tingkat oksidasi +3 biasanya sedikit sekali mengandung Eu yang disebabkan oleh kecenderungannya menghasilkan keadaan +2 dan
=== Promethium, Europium ===
'''Promethium''' terdapat hanya hanya dalam jumlah runutan bijih [[Uranium]] sebagai fragmen Fisi spontan dari <sup>238</sup>U. Garam <sup>147</sup>Pm<sup>3+</sup> merah jambu dalam jumlah miligram, dapat diisolasi dengan metode penukar-ion dari produk fisi dalam simpanan bahan bakar reaktor nuklir di mana <sup>147</sup>Pm (''β''-, 2,64 tahun) dibentuk. Lantanida dipisahkan dari unsur lain dengan pengendapan oksalat atau fluorida dari larutan HNO<sub>3</sub>, dan dari satu sama lain dengan penukar ion dalam resin.
Cerium dan Europium biasanya dipisahkan pertama kali. Cerium dioksidasi menjadi Ce (IV) dan kemudian diendapkan dari HNO<sub>3</sub> 6M sebagai ceric iodat atau dipisahkan dengan ekstraksi pelarut. Europium direduksi menjadi Eu<sup>2+</sup> dan dipisahkan dengan pengendapan sebagai EuSO<sub>4</sub>.
Perilaku penukar ion pertama-pertama tergantung kepada jari-jari ion terhidrasi. Seperti dengan alkali, ion terkecil secara kristalografi yaitu Lu memiliki jari-jari terhidrasi terbesar, sedangkan La memiliki jari-jari terhidrasi terkecil. Dengan demikian, La adalah yang paling kuat terikat dan Lu yang paling lemah ikatannya. Dan urutan elusinya adalah Lu menuju La. Kecenderungan ini dipertegas oleh penggunaan zat pengompleks pada pH yang tepat; ion dengan jari-jari terkecil juga membentuk komplek terkuat
=== Cerium ===
Cerium (IV) juga Zr(IV), Th(IV) dan Pu(IV) mudah diekstraksi dari larutan [[HNO48|HNO<sub>3</sub>]] oleh tributil fosfat yang dilarutkan dalam kerosen atau pelarut inert lainnya dan dapat dipisahkan dari ion-ion lantanida +3. Nitrat Lantanida +3 juga dapat diekstraksi dalam kondisi tertentu bertambah dengan bertambahnya nomor atom; ia lebih tinggi dalam asam kuat dan konsentrasi NO<sub>3</sub><sup>-</sup> yang lebih encer.
=== Unsur yang lebih ringan nomor massanya ===
Unsur-unsur yang lebih ringan (La –Gd) diperoleh dengan reduksi triklorida dengan Ca pada 1000<sup>o</sup>C atau lebih. Bagi Tb, Dy, Ho, Er, Tm, dan juga Y, trifluorida digunakan karena klorida terlalu mudah menguap. Pm dibuat dengan mereduksi PmF<sub>3</sub> dengan Li. Eu, Sm, dan Yb triklorida direduksi hanya menjadi dihalida oleh Ca. Reduksi oksida +3 dengan La pada suhu tinggi menghasilkan
Logamnya putih keperakan dan sangat elektropositif. Mereka bereaksi denga air melepaskan hidrogen
Banyak sifat fisika logam berubah perlahan-lahan sepanjang deret, kecuali bagi Eu dan Yb dan
== Keadaan trivalensi ==
Baris 218 ⟶ 213:
Oksida unsur lainnya mirip CaO dan menyerap CO<sub>2</sub> dan H<sub>2</sub>O dari udara membentuk berturut-turut karbonat dan hidroksida. Hidroksida, M(OH)<sub>3</sub>, benar-benar senyawaan yang kebasaannya menurun dengan naiknya Z, seperti yang diharapkan dari penurunan jari-jari ion. Mereka diendapkan dari larutan akua dengan basa sebagai massa gelatin. Mereka tidak amfoter.
=== Halida ===
Halida Skandium sekali lagi juga merupakan perkecualian. Fluoridanya mirip AlF<sub>3</sub>, menjadi larut dalam HF berlebihan menghasilkan ion ScF<sub>6</sub><sup>3-</sup>; Na<sub>3</sub>ScF<sub>6</sub> adalah seperti kryolit. Meskipun demikian
Fluorida lantanida adalah penting karena ketidak larutannya. Penambahan HF atau F<sup>-</sup> mengendapkan MF<sub>3</sub> bahkan dari larutan 3M HNO<sub>3</sub> dan merupakan uji khas ion lanthanida fluorida dari lantanida yang lebih berat agak larut dalam HF berlebih yang menyebabkan pembentukan kompleks. Fluorida dapat dilarutkan kembali dalam HNO<sub>3</sub> 3M jenuh dengan H<sub>3</sub>BO<sub>3</sub> yang menghilangkan F<sup>-</sup> sebagai BF<sup>4-</sup>.
Kloridanya larut dalam air, yang mana mereka mengkristal sebagai hidrat. Klorida anhidrat dibuat paling baik dengan reaksi
Baris 230 ⟶ 225:
[M(H<sub>2</sub>O)<sub>n</sub>]<sup>3+</sup> + H<sub>2</sub>O ———————› [M(OH)(H<sub>2</sub>O)<sub>n-1</sub>]<sup>2+</sup> + H<sub>3</sub>O<sup>+</sup>
Kecenderungan menghidrolisis bertambah dari La ke Lu, yang konsisten dengan penurunan jari-jari ion. Begitu pula Yttrium terutama Y(OH)<sup>2+</sup> . Bagi Ce<sup>3+</sup>, meskipun demikian, hanya sekitar 1% ion logam dihidrolisis tanpa membentuk suatu endapan, dan kesetimbangan utama
3Ce<sup>3+</sup> + 5H<sub>2</sub>O ———————› [Ce<sub>3</sub>(OH)<sub>5</sub>]<sup>4+</sup> + 5H<sup>+</sup>
Dalam larutan akua, kompleks fluoride yang agak lemah, MFaq<sup>2+</sup> dibentuk. Anion kompleks tidak dibentuk, suatu keistimewaan yang membedakannya dari lantanida +3 sebagai suatu golongan unsure aktinida +3 yang membentuk kompleks anionic dalam larutan HCl kuat.
Baris 245 ⟶ 240:
== Keadaan tetravalensi ==
'''Cerium (IV).''' Ini satu-satunya lantanida +4 yang ada dalam larutan akua demikian juga dalam padatan. Dioksida, CeO<sub>2</sub>, diperoleh dengan pemanasan (Ce(OH)<sub>3</sub>, atau garam okso dalam air . Ini tidak reaktif dan dilarutkan dengan asam hanya dengan adanya zat pereduksi H<sub>2</sub>O<sub>2</sub>, SnII, dan sebagainya) menghasilkan larutan Ce<sup>3+</sup>. Hidrat Ceric oksida, CeO<sub>2</sub>.nH<sub>2</sub>O adalah endapan gelatin berwarna kuning yang diperoleh melalui perlakuan larutan Ce(IV) dengan OH-; Ia larut kembali dalam asam.
Ion ceric dalam larutan diperoleh dengan oksidasi Ce<sup>3+</sup> dalam HNO<sub>3</sub> atau H<sub>2</sub>SO<sub>4</sub> dengan S<sub>2</sub>O<sub>8</sub> atau bismuthat. Sifat kimianya mirip dengan larutan Zr<sup>4+</sup>, dan aktinida +4, Jadi Ce<sup>4+</sup> menghasilkan fosfat yang tidak larutdalam HNO<sub>3</sub> 4M, dan iodat tidak larut dalam HNO<sub>3</sub> 6M, demikian juga oksalat yang tidak larut. Endapan fosfat dan iodat dapat digunakan untuk memisahkan Ce<sup>4+</sup> dari lantanida trivalensi
Ion terhidrasi jingga kekuningan [Ce(H<sub>2</sub>)<sub>n</sub>]<sup>4+</sup>, adalah asam yang cukup kuat, mudah terhidrolisis, dan mungkin hanya terdapat dalam larutan HCLO<sub>4</sub> kuat. Dalam pembentukan kompleks asam lainnya bertanggung jawab atas potensial:
Ce(IV) + e ———› Ce(III) E<sup>o</sup> = +1,28 V (2M HCl) + 1,44 V (1M H<sub>2</sub>SO<sub>4</sub>)
Perbandingan potensial H<sub>2</sub>SO<sub>4</sub>, yang mana pada konsentasi SO<sub>4</sub> besar, spesies utama adalah [Ce( SO<sub>4</sub>)<sub>3</sub>]<sup>2-</sup>
O<sub>2</sub> + 4H<sup>+</sup> + 4e ————› 2H<sub>2</sub>O
Memperlihatkan bahwa larutan asam Ce(IV) yang biasanya digunakan dalam analisis adalah metastabil.
Cerium (IV) digunakan sebagai pengoksidasi dalam analisis dan dalam kimia organik,
Kompleks anion sangat mudah dibentuk. Standar analitik “ceric amonium nitrat” yang dapat dikristalkan dari HNO<sub>3</sub>, mengandung anion heksanitratocerat, [Ce(NO<sub>3</sub>)<sub>6</sub>]<sup>2-</sup>
'''Praseodymium (IV) dan Terbium (IV)'''. Ini hanya ada dalam oksida dan fluorida. Sistem oksida sangat rumit dan non stoikiometri. Potensial Pr(IV)/Pr(III) diperkirakan +2,9 V sehingga tidaklah mengherankan bahwa Pr(IV) tidak ada dalam larutan akua.
Baris 266 ⟶ 261:
== Keadaan divalensi ==
Keadaan +2 diketahui dalam senyawaan larutan maupun padatan Sm, Eu dan Yb seperti tabel dibawah ini.
{| class="wikitable"
|-
Baris 296 ⟶ 291:
Ion-ion Sm<sup>2+</sup> dan Yb<sup>2+</sup> sangat mudah dioksidasi dengan air. Eu<sup>2+</sup> dioksidasi oleh udara. Ion Eu<sup>2+</sup> mirip dengan Ba<sup>2+</sup>. Jadi sulfat dan karbonatnya tidak larut sedangkan hidroksidanya larut. Kestabilan kompleks Eu<sup>2+</sup> dengan EDTA<sup>4-</sup> adalah intermediat antara kompleks Ca<sup>2+</sup> dan Sr<sup>2+</sup>. Senyawaan kristal Sm, Eu, dan Yb biasanya isostruktur dengan analog Sr<sup>2+</sup> atau Ba<sup>2+</sup>. Jadi sulfat dan karbonatnya tidak larut sedangkan hidroksidanya larut. Kestabilan kompleks Eu<sup>2+</sup> dengan EDTA<sup>4-</sup> adalah intermediet antara kompleks Ca<sup>2+</sup> dan Sr<sup>2+</sup>. Senyawaan kristal Sm, Eu, dan Yb biasanya isostruktur dengan analog Sr<sup>2+</sup> atau Ba<sup>2+</sup>
== Lihat Juga ==
* [[Lantanida]]
* [[Logam alkali]]
* [[Logam alkali tanah]]
* [[Unsur golongan 3|Golongan 3 (IIIB)]]
* [[Logam transisi]]
* [[Logam mulia]]
* [[Logam berharga]]
* [[Logam miskin]]
* [[Metaloid]]
* [[Nonlogam]]
== Referensi ==
{{reflist}}
# Cotton, F Albert & Wilkinson, Geoffrey. Basic Inorganic Chemistry. Jhon Wiley and Son. 1976
# Prakash, S. Advance Chemistry of Rare Earth Elements. New Delhi: S. Chand. Co (PVT). 1975,
# Moris, B. Rare Earths. PIRSA Minerals - Mineral Resource Potential - Rare Earth Elements.htm. 2006
# Gordon B. Haxel, James B. Hedrick, and Greta J. Rare Earth Elements—Critical Resources for High Technology http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/. US Geological Survey
# W., Christopher. S. Study of the Rare Earth Resources and Markets for the Mt. Weld Complex. Washingon
# http://www.mii.org/rareearths.html{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
# Bayliss, Peter, A, A. Levinson. A system of nomenclature for rare-earth mineral species: Revision and extension. http://www.minsocam.org/. Department of Geology and Geophysics, The University of Calgary. Canada. 1988
{{Compact periodic table}}
{{Authority control}}
[[Kategori:Kimia]]
[[Kategori:Logam tanah]]
[[Kategori:Unsur kimia]]
|