Material butiran: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Botrie (bicara | kontrib)
k Bot: Penggantian teks otomatis (-apa bila +apabila)
Jessy rizkita (bicara | kontrib)
Fitur saranan suntingan: 3 pranala ditambahkan.
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala
 
(15 revisi perantara oleh 12 pengguna tidak ditampilkan)
Baris 1:
'''Material butiran''' adalah [[bahan]] atau [[material]] yang terdiri dari butiran-butiran bahan lain yang lebih kecil. Contoh sederhana dari material butiran adalah [[pasir]], [[kacang|kacang-kacangan]] (bijinya), [[Biji|biji-bijian]], [[tepung]], dan [[kelereng]].<ref>{{Cite journal|last=Jaeger|first=Heinrich M.|last2=Shinbrot|first2=Troy|last3=Umbanhowar|first3=Paul B.|date=2000-11-21|title=Does the granular matter?|url=https://pnas.org/doi/full/10.1073/pnas.230395897|journal=Proceedings of the National Academy of Sciences|language=en|volume=97|issue=24|pages=12959–12960|doi=10.1073/pnas.230395897|issn=0027-8424|pmc=PMC34076|pmid=11058165}}</ref> Material butiran ini termasuk penting karena dia menunjukkan sifat-sifat lain yang kadang dimiliki hanya oleh [[padat]]an, [[cairan]] atau [[gas]].
 
== Wujud zat tambahan ==
[[Berkas:Wujud-zat.png|thumbjmpl|225px|Wujud zat]]
Tidaklah berlebihan apabila bahkan sampai ada yang mengusulkan bahwa material butiran dapat dikatakan sebagai suatu [[fase benda|fase]] tersendiri dari wujud [[zat]], seperti terlihat dalam gambar berikut ini (A: padat – memiliki bentuk sendiri, B: cair – memiliki tinggi yang sama, C: gas – memenuhi wadahnya, dan D: butiran – bergantung asupan [[energi]]).
 
Baris 12:
Hal yang menarik dari material jenis ini, selain fasenya yang dapat berubah-ubah sesuai dengan kondisi lingkungannya (perubahan fase ini tidak mengubah fase butiran), adalah munculnya banyak fenomena yang belum dapat dirumuskan oleh ilmu [[fisika]] yang ada, misalnya saja dengan Efek Kacang Brasil (''Brazil Nut Effect'') dan Kebalikan Efek Kacang Brasil (''Reverse Brazil Nut Effect''), osilasi, avalansi, segregasi dan turbulensi.
 
[[Berkas:vandu-start.jpg|thumbjmpl|130px|Keadaan sebelum butiran digetarkan secara vertikal]]
[[Berkas:vandu-end.jpg|thumbjmpl|130px|Keadaan pada akhir eksperimen]]
* Efek Kacang Brasil: campuran dua buah butiran berbeda ukuran yang diasup energi dari luar berupa [[vibrasi]] akan membuat terjadinya pemisahan antara kedua butiran, butiran besar di atas dan butiran besar di bawah, dan hal ini tidak tergantung dari massa satuan kedua butiran tersebut.
* Kebalikan Efek Kacang Brasil: kebalikan dari Efek Kacang Brasil, di mana butiran yang lebih kecil akan berada di atas dan yang lebih besar di bawah.
Baris 20:
* Osilasi: pertukaran antara keadaan segregasi dan tercampur. Salah satu fenomena osilasi diperoleh dengan membagi wadah osilasi ke dalam dua buah ruang yang identik.
* Turbulensi: dalam aliran material butiran yang memiliki [[Bilangan Reynolds]] yang berbeda dengan fluida, dapat terjadi turbulensi dengan alasan yang berbeda.
* [[Difusi]] terbalik: umumnya gas atau cairan akan mengalir dari daerah yang berkonsentrasi tinggi ke daerah dengan konsentrasi rendah, akan tetapi hal ini selain dapat pula terjadi pada material butiran, dapat juga berlaku kebalikannya, yaitu butiran dapat memiliki kecenderungan untuk berkumpul atau dari konsentrasi rendah berpindah ke daerah berkonsetrasi tinggi.
 
== Efek kacang Brasil ==
Efek kacang Brasil memiliki suatu hal yang menarik karena pada awalnya sulit untuk dipercaya bahwa apabila dua butiran yang berbeda ukuran dicampurkan dan kemudian digetarkan, maka butiran-butiran yang lebih besar dan berat akan berada di atas, sedangkan yang lebih kecil akan berada di bawah. Hal ini mula-mula diketahui oleh para [[petani]] yang mengumpulkan hasil panennya. Dan kemudian teramati pula pada kotak [[sereal]] ([[kacang]] [[Brasil]]) di mana sebelumnya di pabrik, kacang-kacang tersebut tercampur merata, akan tetapi setelah 'digetarkan' secara tak sengaja dalam proses transportasi, saat dibuka, telah didapatkan terpisah. Kemudian para ahli mulai mengadakan eksperimen untuk mengamati fenomena ini.
 
Sebuah eksperimen mengenai efek ini pernah dilakukan oleh Chippla Vandu, Jürg Ellenberger dan R. Krishna dari Van't Hoff Institute for Molecular Sciences di Universitas Amsterdam.
 
== Kebalikan efek kacang Brasil ==
[[Berkas:Bne-rbne.png|thumbjmpl|200px|Kebalikan efek kacang Brasil]]
[[Berkas:Hong-BN-RBN.png|rightka|220px]]
Kebalikan efek kacang Brasil ditunjukkan oleh Breu ''et. al.'' (Phys. Rev. Lett. '''90''', 014302 (2003)). Menurutnya, kedua efek ini dapat diperoleh.
 
Tampak pada bagian a: campuran dari butiran kaca berwarna (berdiameter 8 &nbsp;mm) dengan butiran polipropilen (''polypropylnene'') (berdiameter 15 &nbsp;mm), dan pada bagian b: campuran dari butiran kuningan (berdiameter 10 &nbsp;mm) dengan butiran kaca (berdiameter 4 &nbsp;mm). Bagian a menunjukkan efek kacang Brazil dan bagian b menunjukkan efek kebalikannya.
 
Lalu apa yang menentukan suatu campuran akan menghasilkan efek kacang Brasil atau kebalikannya? Dengan keahlian Hong ''et. al'' (Phys. Rev. Lett. '''86''', 3423–3426 (2001)) dan Breu (Hong menggunakan simulasi dinamika molekular dan Hong melakukan percobaan) keduanya menunjukkan, dalam batas-batas parameter fisis tertentu, bahwa terdapat hubungan antara massa dan diameter butiran, yang menentukan apakah suatu campuran akan bersifat efek Kacang Brasil atau kebalikannya saat dikenakan vibrasi. Syarat yang dimaksud adalah
 
<math>\left(\frac{d_A}{d_B}\right)^{D-1} \approx \frac{m_A}{m_B}</math>
 
di mana ''d'' menyatakan diameter, ''m'' menyatakan massa, ''D'' menyatakan dimensi (2 atau 3) dan ''A'' serta ''B'' menyatakan masing-masing jenis butiran dalam campuran. Apabila dibuat suatu ruang parameter dua dimensi, di mana sumbu-''y'' untuk <math>d_A/d_B</math> dan sumbu-''x'' untuk <math>m_A/m_B</math>, maka garis ''y = x'' memisahkan ruang efek kacang Brasil dan kebalikannya. Ruang sebelah atas untuk efek kacang Brasil (EKB) dan ruang sebelah bawah untuk kebalikan efek kacang Brasil (KEKB).
Baris 42:
== Avalansi ==
 
[[Berkas:Wooden_hourglassWooden hourglass.jpg|thumbjmpl|100px|Jam pasir]]
 
Avalansi ada suatu fenomena material butiran di mana bersifat sebagai padatan yang diam akan tetapi apabila tercapai suatu keadaan kritis maka akan terjadi perubahan yang tiba-tiba sehingga konfigurasi material butiran berubah untuk kemudian kembali stabil dan diam seperti padatan. Saat terjadi perubahan tersebut dapat dikatakan material butiran bersifat sebagai cairan, walau hanya sesaat. Contoh miniatur dari fenomena ini adalah [[jam pasir]].
 
Adalah karena sifat avalansi material butiran maka jam pasir dapat digunakan untuk pengukur waktu, tidak seperti cairan yang lajunya bergantung jumlah cairan di atasnya, untuk material butiran (dalam hal ini pasir halus) laju jatuhnya bernilai tetap.
Baris 54:
== Iblis Maxwell ==
 
[[Berkas:Maxwells_DemonMaxwells Demon.png|thumbjmpl|220px|Iblis Maxwell]]
Material butiran dapat menunjukkan bahwa suatu ekperimen dalam pemikiran (''thought experiment''/''Gedankenexperiment'') yang dikenal sebagai Iblis Maxwell (''Maxwell's Demon'') dapat terealisasi dalam simulasi, sebagaimana dilakukan oleh Jens Eggers (Phys. Rev. Lett. '''83''', 5322–5325 (1999)), untuk mendukung percobaan yang ditunjukkan oleh H. J. Schlichting dan V. Nordmeier (Math. Naturwiss. Unterr. '''49''', 323 (1996)).
 
Dalam percobaan ini digunakan sebuah kotak dengan luas alas 12 &nbsp;cm<sup>2</sup> dan tinggi 20 &nbsp;cm yang diletakkan di atas sebuah penggetar vertikal dan diisi oleh 100 buah butiran plastik dengan ukuran garis tengah 1 &nbsp;mm. Celah dibuat pada ketinggian 2,3 &nbsp;cm. Pada kondisi penggetar dengan tenaga maksimum yaitu amplitudo 0,3 &nbsp;cm dan frekuensi 50 &nbsp;Hz, partikel terdistribusi merata pada kedua ruang (sisi gambar sebelah kiri), meskipun pada awalnya diisikan hanya pada salah satu ruang. Akan tetapi apabila frekunsi diturunkan, terdapat suatu frekuensi kritis, yaitu di bawah 30 &nbsp;Hz, di mana terjadi kerusakan simetri sehingga butiran-butiran akan lebih memilih untuk mengelompok di salah satu ruang (sisi kanan).
 
Hal ini bertentangan dengan hukum kedua [[termodinamika]], yang dalam hal ini dapat dinyatakan bahwa "apabila dua buah sistem yang memiliki perbedaan [[temperatur]] dikontakkan, niscaya apabila waktu yang dibutuhkan cukup, kedua sistem akan berada pada [[Kesetimbangan termodinamik|kesetimbangan termal]] (memiliki temperatur yang sama)". Dalam kasus ini seharusnya kedua ruangan tetap memiliki jumlah butiran yang sama, apabila butiran-butirannya masih dapat bergerak (temperatur tidak nol).
 
== Segregasi ==
 
[[Berkas:Segregasi.png|thumbjmpl|225px|Contoh-contoh segregasi]]
 
Segregasi atau pemisahan merupakan salah satu fenomena material butiran yang dapat amat dimanfaatkan oleh industri. Akan tetapi fenomena ini harus pula diperhatikan efesiensi pemanfaatannya apabila dibandingkan dengan teknologi yang telah ada, yaitu proses penyaringan dan pemisahan secara gaya berat (ban berjalan dan putaran sentrifugal).
Baris 71:
== Osilasi ==
 
[[Berkas:Osilasi-imit-lambiotte.png|thumbjmpl|225px|Osilasi]]
Dengan menggunakan wadah yang diberi penyekat suatu fenomena osilasi campuran dua buah material butiran telah ditunjukkan melalui simulasi dinamika molekular dan model [[persamaan diferensial biasa]], seperti telah dilakukan oleh R. Lambiotte, J.M. Salazar dan L.Brenig (Physics Letters A '''343''' (2005) 224-230).
 
Dalam gambar berikut terlihat bahwa sebelum butiran yang lebih besar berpindah, terjadi dulu efek kacang Brasil, yang menyebabkan butiran besar berada di atas (sedangkan butiran kecil di bawah) dan dapat berpindah, yang kemudian disusul oleh butiran kecil. Pada gambar bagian keempat terlihat bahwa diperlukan suatu saat agar keadaan kebalikan efek kacang Brasil menjadi keadaan efek kacang Brasil sehingga butiran besar berada di atas kembali, untuk mempersilakan butiran besar pindah ke ruang lainnya. Dan kejadian seperti dalam gambar bagian pertama terulang kembali dalam sisi yang berlawanan, dan berlangsunglah osilasi. Hasil tersebut diperoleh oleh S. Viridi, M. Schmick dan M. Markus melalui eksperimen yang berlawanan dengan hasil yang diperoleh sebelumnya melalui simulasi dinamika molekular oleh Lambiotter ''et al.''.
 
== Model material butiran ==
Banyak model dan pendekatan-pendekatan yang dilakukan, baik secara empiris, teoritisteoretis ataupun melalui simulasi, akan tetapi hal tersebut belum dapat menjelaskan sifat-sifat material butiran secara lengkap. Masing-masing rumusan hanya dapat untuk sementara waktu berguna bagi fenomena-fenomena yang khusus.
 
Fisika statistik dan termodinamika merupakan salah satu cara untuk memahami material butiran. Dengan menggunakan konsep [[gas ideal]], beberapa permasalahan material butiran dalam ruang tertutup dengan jumlah partikel yang cukup banyak dapat dihampiri, akan tetapi tidak apabila terjadi perubahan fase yang menyebabkan tidak lagi berlakunya rumusan tersebut.
 
Salah satu hal yang sulit dicapai oleh termodinamika adalah terdapat perbedaan mengenai konsep temperatur dalam definsi umum dan temperatur dalam material butiran. Dalam bahan pada umumnya definisi temperatur berawal dari [[energi kinetik]] rata-rata partikel penyusun bahan ([[atom]] atau [[elektron]]), dalam material butiran, apabila digunakan definisi yang sama, akan langsung menyalahi [[Hukum termodinamika|Hukum Termodinamika]], di mana temperatur 0°K hanya bisa dicapai oleh proses limit tak berhingga. Sedangkan pada material butiran, dalam fase padat, langsung diperoleh temperatur yang nol. Berbagai konsep temperatur telah dikembangkan agar Termodinamika dapat digunakan untuk membahas material butiran.
 
Untuk material butiran yang mengalir, pendekatan fisika fluida dengan persamaan kontinuitas dapat digunakan, akan tetapi pun berlaku hal yang sama, pendekatan ini memiliki batas-batas tertentu.
Baris 87:
== Termodinamika Butiran ==
 
Pada bagian ini akan disampaikan perumusan yang telah dilakukan oleh H. J. Herrmann untuk mengadakan konsep termodinamika dalam material butiran. Dalam [[termodinamika]] dikenal banyak variabel, seperti halnya energi dalam ''U'', kalor ''Q'', kerja ''W'', entropi ''S'', entalpi ''H'', energi bebas Gibbs ''G'', energi bebas Helmholtz ''F'', volum ''V'', tekanan ''P'', dan kapasitas panas ''<math>C_V</math>''. Variabel-variabel ini ada kalanyaadakalanya saling terkait dan kadang saling bebas, bergantung dari sistem yang ditinjau. Umumnya dapat dibentuk ''U'', ''F'', ''H'' dan ''G'' sebagai fungsi dari ''T'', ''S'', ''V'' dan ''P'' yang dapat menghasilkan kumpulan persamaan yang dikenal sebagai [[Hubungan Maxwell]].
 
<center>
Baris 124:
 
== Efek Leidenfrost ==
[[Berkas:Leidenfrost-granular.png|thumb|225px|Efek Leidenfrost Butiran]]
Baru-baru ini ditemukan bahwa material butiran pun dapat menunjukkan efek leidenfrost, di mana fase padat dari butiran dapat menunggangi fase gas. Pada efek leidenfrost sebenarnya, fase cair menunggangi fase gas, Eshuis dkk. dari Universitas Twente, Belanda, menjelaskan dengan model dan percobaan bahwa efek ini membutuhkan nilai ''(af)'' tertentuk agar dapat terjadi, di mana ''a'' adalah amplitudo getaran wadah dan ''f'' adalah frekuensi getarannya.
 
== Material butiran 1D ==
 
[[Berkas:Mat_but_1DMat but 1D.png|thumbjmpl|225px|Material butiran 1D]]
 
Yang dimaksud dengan material butiran 1D (satu dimensi) adalah suatu model eksperimen, simulasi ataupun teori yang dikembangkan dengan membatasi derajat kebebasan butiran sehingga hanya bisa bergerak translasi ke satu arah. Dua buah contohnya adalah mainan [[ayunan Newton]] (''Newton's cradle'') dan untaian manik-manik.
Baris 138 ⟶ 137:
 
== Logam butiran ==
[[Berkas:Logam_butiranLogam butiran.png|thumbjmpl|225px|Logam butiran]]
Logam butiran umumnya tersusun seperti [[roti lapis]] (''sandwich''), yaitu dua buah lempeng bahan tak-menghantar (isolator) yang di tengah-tengahnya disisipkan butiran-butiran logam. Kadang kala suatu logam butiran dapat dianggap seakan-akan sebagai larik (''array'') dari titik kuantum (''quantum dot''), yang dari sisi teori dan eksperimen mempunyai kekhususan menarik secara [[fisika]].
 
Dalam logam butiran, bukan lagi sifat material butiran yang dinamis (fase, temperatur/energi kinetik, distribusi/posisi) yang diperhatikan, melainkan sifat-sifat listrik dan kekuatannya mekaniknya (kelenturan, kegetasan).
 
== Referensi ==
<references />
 
== Pranala luar ==
* {{en}} [http://mrsec.uchicago.edu/granular/introduction.html An Introduction to Granular Physics] {{Webarchive|url=https://web.archive.org/web/20060910100859/http://mrsec.uchicago.edu/granular/introduction.html |date=2006-09-10 }}
* {{en}} A. P. J. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg, "Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation", [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000090000001014302000001&idtype=cvips&gifs=yes Phys. Rev. lett. '''90''', 014302 (2003)]{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
* {{en}} Daniel C. Hong, Paul V. Quinn, and Stefan Luding, "Reverse Brazil Nut Problem: Competition between Percolation and Condensation", [http://prola.aps.org/abstract/PRL/v86/i15/p3423_1 Phys. Rev. Lett. '''86''', 3423 (2001)]{{Pranala mati|date=Februari 2022 |bot=InternetArchiveBot |fix-attempted=yes }}
* {{en}} Jens Eggers, "Sand as Maxwell's Demon" [http://prola.aps.org/abstract/PRL/v83/i25/p5322_1 Phys. Rev. Lett. 83, 5322–5325 (1999)]{{Pranala mati|date=Februari 2022 |bot=InternetArchiveBot |fix-attempted=yes }}
* {{en}} Chippla Vandu, Jürg Ellenberger and R. Krishna, "[http://www.science.uva.nl/research/cr/GranularSegregation/ Vibration-Induced Granular Segregation: The Brazil Nut Problem]".
* {{en}} Jingshan Zhang and Boris I. Shklovskii, "Density of states and conductivity of a granular metal or an array of quantum dots", [http://link.aps.org/abstract/PRB/v70/e115317 Phys. Rev. B 70, 115317 (2004)]
* {{en}} R. Lambiottea, J.M. Salazarb, and L. Breniga, "From particle segregation to the granular clock", [http://dx.doi.org/10.1016/j.physleta.2005.06.006 Physics Letters A '''343''' (2005) 224–230]
* {{en}} D R Lovett, K M Moulding and S Anketell-Jones, "Collisions between elastic bodies: Newton's cradle", [http://www.iop.org/EJ/abstract/0143-0807/9/4/015 Eur. J. Phys. '''9''' 323-328 (1988)]{{Pranala mati|date=Februari 2022 |bot=InternetArchiveBot |fix-attempted=yes }}
* {{en}} Stephen Bond, Yao Houndonougbo, Marvin McNett II, Johnny Tabash, "The SHAKE Algorithm Applied to the Lattice Newton's Cradle", [http://femto.cs.uiuc.edu/~sbond/reports/MATH_996/ URL] {{Webarchive|url=https://web.archive.org/web/20060902023756/http://femto.cs.uiuc.edu/~sbond/reports/MATH_996/ |date=2006-09-02 }}
* {{en}} Hisao Hayakawa, Daniel C. Hong, "Thermodynamic Theory of Weakly Excited Granular Materials", [http://arxiv.org/abs/cond-mat/9703075 arXiv:cond-mat/9703075]
* {{en}} Nathan C. Blanchard, Paul V. Quinn, Daniel Ou-Yang, Joseph Both, Daniel C. Hong, "Fermi Statistics of Weakly Excited Granular Materials in a Vibrating Bed II: One Dimensional Experiment", [http://arxiv.org/abs/cond-mat/9901113 arXiv:cond-mat/9901113]
Baris 160 ⟶ 162:
* {{en}} Sparisoma Viridi, Malte Schmick, and Mario Markus, "Experimental observations of oscillations and segregation in a binary granular mixture", [http://dx.doi.org/10.1103/PhysRevE.74.041301 Phys. Rev. E 74, 041301 (2006)].
 
[[Kategori:Bahan]]
[[Kategori:Material butiran| ]]
[[Kategori:Bahan]]
{{Link GA|sv}}
 
[[de:Granulare Materie]]
[[en:Granular material]]
[[es:Materia granular]]
[[it:Materia granulare]]
[[ja:粉粒体]]
[[ko:알갱이]]
[[nl:Granulaat]]
[[nn:Granulært materiale]]
[[no:Granulært materiale]]
[[ru:Сыпучее тело]]
[[sv:Granulärt material]]