Bilangan bulat: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) →Sifat aljabar dan aksioma bilangan bulat: Kata "kita" telah digantikan. |
Gadih Ranti (bicara | kontrib) Fitur saranan suntingan: 3 pranala ditambahkan. |
||
(40 revisi perantara oleh 14 pengguna tidak ditampilkan) | |||
Baris 1:
{{distinguish|Angka bulat}}
[[Berkas:Number-line-2.svg|jmpl|Bilangan bulat dapat dianggap sebagai titik-titik diskret yang berjarak sama sepanjang [[garis bilangan]]. Pada gambar ini, bilangan-bilangan bulat positif ditandai dengan warna hijau dan bilangan-bilangan bulat negatif dengan warna biru.|360x360px]]
'''Bilangan bulat''' adalah bilangan yang dapat dituliskan tanpa komponen desimal atau pecahan. Sebagai contoh, 21, 4, 0, -3, -67 dan -2048 merupakan bilangan bulat, sedangkan 9,75 , {{sfrac|5|1|2}} , dan <math>\sqrt{5}</math> bukan.
[[Himpunan]] bilangan bulat terdiri dari angka [[0 (angka)|0]], semua [[bilangan bulat positif]] <math>\{1,2,3,\dots\}</math> (juga disebut dengan [[bilangan asli]]), dan [[invers aditif]]-nya, semua bilangan bulat negatif <math>\{-1,-2,-3,\dots\}</math>.<ref>{{Cite web|last=santoso|first=Kiki Wahyu|date=2020-07-21|title=√ Pengertian Bilangan Bulat dan Contohnya [LENGKAP] ...|url=https://saintif.com/bilangan-bulat/|website=Saintif|language=en-US|access-date=2020-08-20}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Whole Number|url=https://mathworld.wolfram.com/WholeNumber.html|website=mathworld.wolfram.com|language=en|access-date=2021-11-12}}</ref> Dalam [[matematika]], himpunan ini sering dilambangkan dengan <math>\Z</math>,<ref>{{Cite web|title=Set of Integers Symbol (ℤ)|url=https://wumbo.net/symbol/set-of-integers/|website=wumbo.net|access-date=2021-11-14|archive-date=2021-11-14|archive-url=https://web.archive.org/web/20211114024000/https://wumbo.net/symbol/set-of-integers/|dead-url=yes}}</ref> atau huruf tebal (<math>\mathbf{Z}</math>). Huruf kapital [[Z]] yang digunakan berasal dari kata ''Zahlen'', yang berarti bilangan dalam [[bahasa Jerman]].<ref>{{Cite web|date=2020-03-01|title=Compendium of Mathematical Symbols|url=https://mathvault.ca/hub/higher-math/math-symbols/|website=Math Vault|language=en-US|access-date=2020-08-19}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Integer|url=https://mathworld.wolfram.com/Integer.html|website=mathworld.wolfram.com|language=en|access-date=2020-08-11}}</ref><ref>{{cite web|last=Miller|first=Jeff|date=2010-08-29|title=Earliest Uses of Symbols of Number Theory|url=http://jeff560.tripod.com/nth.html|archive-url=https://web.archive.org/web/20100131022510/http://jeff560.tripod.com/nth.html|archive-date=2010-01-31|access-date=2010-09-20|url-status=dead}}</ref><ref name="Cameron1998">{{cite book|author=Peter Jephson Cameron|year=1998|url=https://books.google.com/books?id=syYYl-NVM5IC&pg=PA4|title=Introduction to Algebra|publisher=Oxford University Press|isbn=978-0-19-850195-4|page=4|access-date=2016-02-15|archive-url=https://web.archive.org/web/20161208142220/https://books.google.com/books?id=syYYl-NVM5IC&pg=PA4|archive-date=2016-12-08|url-status=live}}</ref>[[Berkas:Number-systems.svg|jmpl|Himpunan bilangan bulat merupakan subhimpunan dari himpunan [[bilangan rasional]], sekaligus juga dari [[bilangan real]]]][[Subhimpunan]] <math>\Z</math> yang hanya terdiri dari angka 0 dan bilangan-bilangan bulat positif disebut dengan [[bilangan cacah]].<ref>{{Cite book|last=Pasinggi|first=Yonathan Saba|date=2019|url=http://eprints.unm.ac.id/15757/1/BUKU%20PAK%20JONATHAN.pdf|title=Kesulitan Memahami Konsep Bilangan Cacah di Sekolah Dasar|location=Gowa|publisher=Agma|isbn=|pages=17|url-status=live}}</ref> Himpunan <math>\Z</math> sendiri merupakan [[subhimpunan]] dari himpunan [[bilangan rasional]],<ref name=":6">{{Cite web|title=Intermediate Algebra, Tutorial 3: Sets of Numbers|url=https://www.wtamu.edu/academic/anns/mps/math/mathlab/int_algebra/int_alg_tut3_sets.htm|website=www.wtamu.edu|access-date=2021-11-15}}</ref> karena nilainya dapat ditulis sebagai pecahan dengan penyebut 1. Bilangan rasional selanjutnya merupakan subhimpunan dari himpunan [[bilangan real]].<ref>{{Cite web|title=CK12-Foundation|url=https://flexbooks.ck12.org/cbook/ck-12-elementary-intermediate-college-algebra/section/1.3/primary/lesson/subsets-of-real-numbers-c-alg/|website=flexbooks.ck12.org|access-date=2021-11-15}}</ref>
== Notasi
[[Berkas:Latex integers.svg|jmpl|131x131px|[[Simbol]] Z, yang berasal dari kata ''Zahlen'' ([[bahasa Jerman]]) yang berarti "bilangan", melambangkan [[himpunan]] bilangan bulat]]
== Sifat-sifat aljabar
<!-- Sifat-sifat ini dapat dilihat sebagai kumpulan aksioma (dianggap sebagai kebenaran) untuk bilangan bulat. Ada baiknya ada referensi ke hal ini
-- Kekavigi -->Seperti himpunan [[bilangan asli]], <math>\Z</math> [[Ketertutupan (matematika)|tertutup]] terhadap [[Operasi (matematika)|operasi]] penjumlahan dan perkalian. Artinya, penjumlahan maupun perkalian dari dua bilangan bulat akan menghasilkan bilangan bulat.<ref name=":3">{{Cite web|last=Buron|first=Dozon|title=Properties of Multiplication of Integers (Definition and Examples)|url=https://byjus.com/maths/properties-multiplication-integers/|website=BYJUS|language=en-US|access-date=2021-11-12}}</ref><ref name=":2">{{Cite web|title=Closure Property of Integers CBSE Class 7 Math Notes|url=https://edusaksham.com/chapters/CBSE-Class-7-Mathematics-Closure-Property-of-Integers.html|website=edusaksham.com|access-date=2021-11-12}}</ref> <math>\Z</math> juga tertutup terhadap operasi [[pengurangan]] karena mengandung 0 dan bilangan-bilangan negatif, berbeda halnya dengan [[bilangan asli]]. Namun karena hasil [[pembagian]] dua bilangan bulat belum tentu berupa bilangan bulat pula (contohnya 1 ketika dibagi dengan 2), <math>\Z</math> tidak tertutup terhadap pembagian. Walaupun bilangan asli tertutup terhadap [[eksponensiasi]], sifat ini tidak berlaku pada bilangan bulat, karena hasil eksponensiasi dapat berbentuk pecahan ketika eksponen bernilai negatif.
Tabel berikut berisi daftar beberapa sifat dasar operasi penambahan dan perkalian, untuk sembarang bilangan bulat <math>a</math>, <math>b</math>, dan <math>c</math>:
{| class="wikitable" style="text-align:center; margin:1em auto 1em auto;"
| || '''Penambahan''' || '''Perkalian'''
Baris 25 ⟶ 23:
| [[Ketertutupan (matematika)|Ketertutupan]] || <math>a + b</math> adalah bilangan bulat || <math>a \times b</math> adalah bilangan bulat
|-
| [[Asosiatif]]|| <math>a+(b+c) = (a+b)
|-
| [[Komutatif]]|| <math>a+b = b+a</math>|| <math>a\times b = b \times a</math>
Baris 36 ⟶ 34:
| [[Distributif]]|| colspan="2" align="center" | <math>a \times (b+c) = (a\times b) + (a\times c)</math>
|}
Empat sifat pertama untuk perkalian yang ditulis dalam tabel, menyatakan bahwa <math>\mathbb{Z}</math> dalam [[Operasi (matematika)|operasi]] perkalian merupakan suatu [[monoid komutatif]]. Namun, tidak semua bilangan bulat memiliki [[invers perkalian]] (contohnya angka 2), mengakibatkan <math>\mathbb{Z}</math> dalam perkalian bukan suatu [[Grup (matematika)|grup]]. Tidak lengkapnya invers perkalian untuk setiap elemen setara dengan pernyataan <math>\mathbb{Z}</math> tidak tertutup dalam pembagian, mengartikan bahwa <math>\mathbb{Z}</math> bukan suatu [[Lapangan (matematika)|lapangan]]. Lapangan terkecil yang mengandung bilangan bulat sebagai sublapangan adalah lapangan [[bilangan rasional]].
Lima sifat pertama untuk penjumlahan yang ditulis dalam tabel, menyatakan bahwa <math>\mathbb{Z}</math> dalam penjumlahan merupakan suatu [[grup Abelian]]. Himpunan <math>\mathbb{Z}</math> juga merupakan suatu [[grup siklik]], karena semua bilangan bulat bukan 0 dapat ditulis sebagai penjumlahan terhingga <math>1 + 1 + \dots + 1</math> atau <math>(-1) + (-1) + \dots + (-1)</math>. Malahan, <math>\mathbb{Z}</math> dalam penjumlahan adalah ''satu-satunya'' grup siklik tak hingga — dalam artian semua grup siklik tak hingga bersifat [[Isomorfisme|isomorfik]] dengan <math>\mathbb{Z}</math>.
Semua sifat pada tabel (kecuali baris terakhir), ketika digunakan bersama-sama, mengartikan bahwa <math>\mathbb{Z}</math> dengan penjumlahan dan perkalian membentuk suatu [[gelanggang komutatif]] dengan [[elemen identitas]]. Gelanggang ini adalah fondasi semua objek [[struktur aljabar]].
Walaupun pembagian yang umum tidak terdefinisi di <math>\mathbb{Z}</math>, operasi pembagian "dengan sisa" dapat didefinisikan. Pembagian ini disebut [[pembagian Euklides]], dan memiliki sifat penting berikut: untuk sembarang dua bilangan bulat <math>a</math> dan <math>b</math> dengan <math>b \ne 0</math>, akan ada bilangan bulat unik <math>q</math> dan <math>r</math> yang memenuhi <math>a = qb + r</math> dan <math>0 \le r < |b|</math>, dengan notasi <math>|b|</math> berarti [[Nilai absolut|nilai mutlak]] dari <math>b</math>. Bilangan <math>q</math> disebut ''hasil bagi'' dan <math>r</math> disebut ''sisa pembagian'' <math>a</math> oleh <math>b</math>. [[Algoritme Euklides]] menggunakan serangkaian operasi pembagian Euklides untuk menghitung [[faktor persekutuan terbesar]].
Himpunan bilangan bulat dapat diurutkan, secara alami dari nilai terkecil hingga terbesar: <math>\cdots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \cdots</math>. Dua bilangan bulat dibandingkan dengan lambang-lambang yaitu lebih dari, kurang dari, lebih dari atau sama dengan, atau kurang dari atau sama dengan, masing-masing dilambangkan sebagai <math>></math>, <math><</math>, <math>\ge</math>, dan <math>\le</math>. Bilangan bulat disebut ''bilangan positif'' jika nilainya <math>> 0</math> dan disebut ''bilangan negatif'' jika nilainya <math>< 0</math>. Sedangkan penggunaan tanda <math>\le</math> menyatakan bahwa bilangan ''tidak positif'', dan penggunaan tanda <math>\ge</math> menyatakan bahwa bilangan ''tidak negatif''.<ref>{{Cite book|last=Abdussakir|first=|date=2014|url=https://core.ac.uk/download/pdf/158624685.pdf|title=Matematika dalam Al-Qur'an|location=Malang|publisher=UIN-Maliki Press|isbn=978-602-958-440-0|pages=83|url-status=live}}</ref>
Pengurutan bilangan bulat kompatibel dengan sifat-sifat aljabar, dalam artian:
# Jika <math>a<b</math> dan <math>c<d</math>, maka <math>a+c<b+d</math>
# Jika <math>a<b</math> dan <math>0<c</math>, maka <math>ac < bc</math>
Hal ini menyimpulkan <math>\Z</math> dan definisi keterurutan di atas akan membentuk suatu [[gelanggang terurut]].
== Konstruksi ==
[[Berkas:Relative_numbers_representation.svg|al=Representation of equivalence classes for the numbers −5 to 5|jmpl|Titik-titik berwarna merah menandakan pasangan-pasangan terurut [[bilangan asli]]. Garis putus-putus menandakan pasangan-pasangan terurut yang berada pada kelas ekuivalensi yang sama.]]
Dalam pengajaran di sekolah, bilangan bulat umumnya didefinisikan secara intuitif sebagai kumpulan [[bilangan asli]], angka nol, dan negatif dari kumpulan bilangan asli (maksudnya <math>\{-1, -2, -3, \dots \}</math>). Namun, definisi ini memerlukan banyak kasus (setiap operasi perlu didefinisikan untuk setiap kombinasi jenis bilangan) dan menyulitkan untuk membuktikan bahwa bilangan bulat memenuhi berbagai rumus aritmetika.<ref>{{cite book|last=Mendelson|first=Elliott|year=2008|url=https://books.google.com/books?id=3domViIV7HMC&pg=PA86|title=Number Systems and the Foundations of Analysis|publisher=Courier Dover Publications|isbn=978-0-486-45792-5|series=Dover Books on Mathematics|page=86|access-date=2016-02-15|archive-url=https://web.archive.org/web/20161208233040/https://books.google.com/books?id=3domViIV7HMC&pg=PA86|archive-date=2016-12-08|url-status=live}}.</ref> Karena itu, matematika yang modern menggunakan definisi yang lebih lebih abstrak,<ref>Ivorra Castillo: ''Álgebra''</ref> yang memungkinkan operasi-operasi aritmetika didefinisikan tanpa perlu membaginya dalam kasus-kasus.<ref>{{cite book|last=Frobisher|first=Len|year=1999|url=https://books.google.com/books?id=KwJQIt4jQHUC&pg=PA126|title=Learning to Teach Number: A Handbook for Students and Teachers in the Primary School|publisher=Nelson Thornes|isbn=978-0-7487-3515-0|series=The Stanley Thornes Teaching Primary Maths Series|page=126|access-date=2016-02-15|archive-url=https://web.archive.org/web/20161208121843/https://books.google.com/books?id=KwJQIt4jQHUC&pg=PA126|archive-date=2016-12-08|url-status=live}}.</ref> Bilangan bulat selanjutnya dikonstruksi (didefinisikan) secara formal sebagai [[Kelas ekuivalen|kelas-kelas ekuivalensi]] dari [[pasangan terurut]] bilangan asli <math>(a,b)</math>.<ref name="Campbell-1970-p83">{{cite book|author=Campbell, Howard E.|year=1970|url=https://archive.org/details/structureofarith00camp/page/83|title=The structure of arithmetic|publisher=Appleton-Century-Crofts|isbn=978-0-390-16895-5|page=[https://archive.org/details/structureofarith00camp/page/83 83]|url-access=registration}}</ref>
Pasangan <math>(a,b)</math> dapat dianggap sebagai hasil dari mengurangi <math>b</math> dari <math>a</math>.<ref name="Campbell-1970-p83" /> Untuk memastikan bahwa {{nowrap|1 − 2}} dan {{nowrap|4 − 5}} menghasilkan bilangan yang sama, [[relasi ekuivalensi]] {{math|~}} didefinisikan pada pasangan-pasangan ini dengan aturan:
: <math>(a,b) \sim (c,d) </math>
tepat ketika
: <math>a + d = b + c </math>.
Operasi penjumlahan dan perkalian bilangan bulat selanjutnya dapat didefinisikan dalam operasi ekuivalensi pada bilangan asli.<ref name="Campbell-1970-p83" /> Dengan menggunakan notasi <math>[(a,b)]</math> untuk menyatakan kelas ekuivalensi yang memiliki <math>(a,b)</math> sebagai anggota, dapat dituliskan:
: <math>[(a,b)] + [(c,d)] := [(a+c,b+d)]</math>.
: <math>[(a,b)]\cdot[(c,d)] := [(ac+bd,ad+bc)]</math>.
Invers (lawan) penjumlahan dari suatu bilangan bulat dapat dihasilkan dengan menukar urutan dari pasangan:
: <math>-[(a,b)] := [(b,a)]</math>.
Sehingga operasi pengurangan dapat didefinisikan sebagai penjumlahan dari invers penjumlahan:
: <math>[(a,b)] - [(c,d)] := [(a+d,b+c)]</math>.
Pengurutan yang standar pada bilangan-bilangan bulat dapat dituliskan sebagai:
: <math>[(a,b)] < [(c,d)]</math> [[jika dan hanya jika]] <math>a+d < b+c</math>.
Lebih lanjut, setiap kelas ekuivalen memiliki satu anggota unik yang berbentuk <math>(n,0)</math> atau <math>(0,n)</math> (atau keduanya secara bersamaan). Sehingga pada gilirannya, kelas <math>[(n,0)]</math> dapat diwakilkan oleh bilangan asli <math>n</math>, sedangkan kelas <math>[(0,n)]</math> diwakilkan oleh bilangan <math>-n</math>. Angka <math>-0 = 0</math> mewakili kelas <math>[(0,0)]</math>. Secara umum, kelas <math>[(a,b)]</math> diwakili oleh bilangan bulat
: <math>\begin{cases} a - b, & \mbox{jika } a \ge b \\ -(b - a), & \mbox{jika } a < b
\end{cases}</math>
Cara konstruksi bilangan bulat seperti di atas menghasilkan [[Representasi grup|representasi]] bilangan bulat sebagai <math>\{\dots,-2,-1,0,1,2,\dots\}</math> yang familiar. Berikut beberapa contoh bilangan bulat dan kelas ekuivalen yang diwakilinya:
: <math>\begin{align}
0 &= [(0,0)] &= [(1,1)] &= \cdots & &= [(k,k)] \\
1 &= [(1,0)] &= [(2,1)] &= \cdots & &= [(k+1,k)] \\
-1 &= [(0,1)] &= [(1,2)] &= \cdots & &= [(k,k+1)] \\
2 &= [(2,0)] &= [(3,1)] &= \cdots & &= [(k+2,k)] \\
-2 &= [(0,2)] &= [(1,3)] &= \cdots & &= [(k,k+2)]
\end{align}</math>
== Kardinalitas ==
[[Kardinalitas]] dari himpunan bilangan bulat sama dengan {{math|ℵ{{sub|0}}}} ([[Bilangan alef#Alef-nol|alef-nol]]). Pernyataan ini dapat ditunjukkan dengan membuat suatu fungsi [[bijeksi]] dari <math>\mathbb{Z}</math> ke himpunan [[bilangan cacah]] <math>\mathbb{N}= \{0, 1, 2, ...\}</math>. Fungsi tersebut dapat didefinisikan sebagai
: <math>f(x) = \begin{cases} -2x, & \mbox{jika } x \leq 0\\ 2x-1, & \mbox{jika } x > 0 \end{cases} </math>
Fungsi ini akan menghasilkan [[Grafik fungsi|grafik]] (himpunan dari pasangan <math>(x, f(x))</math> sebagai berikut:
: <math>\{\dots (-4,8), (-3,6), (-2,4), (-1,2), (0,0), (1,1), (2,3), (3,5), \dots \}</math>.
[[Fungsi invers]] dari bijeksi tersebut didefinisikan sebagai
: <math>\begin{cases}g(2x) = -x\\g(2x-1)=x \end{cases} </math>
yang menghasilkan grafik
: <math>\{(0,0), (1,1), (2,-1), (3,2), (4,-2), (5,-3),\dots \}</math>.
== Dalam ilmu komputer ==
{{Main|Integer (ilmu komputer)}}
Dalam [[ilmu komputer]], integer ([[Bahasa Inggris]] untuk kata "bilangan bulat") umumnya merupakan suatu [[tipe data]] primitif di [[Bahasa pemrograman|bahasa-bahasa pemrograman]]. Namun, tipe data integer hanya dapat merepresentasikan [[Himpunan bagian|subset]] dari semua bilangan bulat, karena komputer memiliki kapasitas yang terbatas. Sebagai contoh, tipe data ''integer'' dalam bahasa pemrograman [[Pascal (bahasa pemrograman)|Pascal]] hanya mampu menyimpan bilangan bulat yang bernilai diantara <math>-32768</math> sampai <math>32767</math>. Pada representasi ''two's complement'' yang umum digunakan, [[Tanda (matematika)|tanda]] hanya didefinisikan untuk membedakan "bilangan negatif" dan "bilangan tak negatif", bukan "bilangan negatif, positif, dan 0" (walaupun, sebenarnya komputer juga dapat menentukan apakah suatu nilai integer benar-benar bernilai positif). Pada beberapa bahasa pemrograman, aproksimasi bilangan bulat dengan panjang [digit] konstan (''fixed-length integer'') umumnya diwakili oleh tipe data ''int'' atau Integer (seperti pada [[Algol68]], [[C (bahasa pemrograman)|C]], [[Java (programming language)|Java]], [[Object Pascal|Delphi]], dll.).
Representasi bilangan bulat dengan panjang [[digit]] fleksibel ({{Lang-en|variable-length integer representation}}), seperti tipe data [[Bignum|bignums]], dapat menyimpan sembarang bilangan bulat asalkan dapat disimpan di memori komputer. Implementasi lain dari tipe data integer menggunakan ukuran yang konstan/tetap, sehingga hanya dapat menyimpan nilai bilangan bulat dalam suatu [[Selang (matematika)|selang]] tertentu. Ukuran yang dipakai umumnya merupakan banyaknya bits (4, 8, 16, dst.) atau panjang digit desimal yang mudah diingat (misalnya, 9 digit atau 10 digit).
== Perumuman ==<!-- Konsep bilangan bulat dapat diperluas menjadi... -->
=== Bilangan bulat Gauss ===
{{Main|Bilangan bulat Gauss}}
Dalam [[teori bilangan]], [[bilangan bulat Gauss]] adalah [[bilangan kompleks]], dimana [[bagian riil]] dan [[bagian imajiner]] adalah bilangan bulat, dengan penambahan dan perkalian biasa terhadap bilangan kompleks akan membentuk [[ranah integral]]. Bilangan bulat Gauss dapat dilambangkan sebagai <math>\mathbf{Z}[i]</math>
Rumus di atas memberikan keterangan, di mana <math>i</math> adalah [[bilangan khayal]].
Baris 121 ⟶ 130:
{{Main|Bilangan bulat Eisenstein}}
[[Bilangan bulat Eisenstein]], dinamai dari [[Gotthold Eisenstein]], atau dikenal juga sebagai [[bilangan bulat Eisenstein–Jacobi]], adalah bilangan dengan bentuk <math>a + b\omega</math>.<ref name=":5">{{Cite web|last=Weisstein|first=Eric W.|title=Eisenstein Integer|url=https://mathworld.wolfram.com/EisensteinInteger.html|website=mathworld.wolfram.com|language=en|access-date=2021-11-15}}</ref> Bilangan bulat Eisenstein dapat dinyatakan sebagai
: <math display>\mathbf{Z}[\omega]=\{a+b\omega \mid a,b\in \Z \}</math>
dimana <math>\omega = \frac{-1 + i\sqrt{3}}{2}</math>.<ref name=":5" />
== Aplikasi bilangan bulat ==
[[Berkas:Pakkanen.jpg|jmpl|260x260px|Sebuah termometer yang menunjukkan suhu sekitar <math>-17^\circ \mbox{C}</math>.]]
Salah satu
== Lihat pula ==
Baris 155 ⟶ 147:
*[[Bilangan asli]]
*[[Bilangan bulat Eisenstein]]
*[[Bilangan bulat Gauss]]
*[[Bilangan bulat kekisi]]
* [[Bilangan cacah]]
* [[Bilangan rasional]]
*[[Fungsi bilangan bulat terbesar dan terkecil]]
*[[Fungsi phi Euler]]
Baris 166 ⟶ 157:
== Catatan kaki ==
{{div col|colwidth=30em}}
<references group="nb" />
{{div col end}}
== Rujukan ==
|