Nukleotida: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
kTidak ada ringkasan suntingan |
Fitur saranan suntingan: 1 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(42 revisi perantara oleh 11 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:DAMP chemical structure.svg|jmpl|275px|Nukleotida ini mengandung [[pentosa|gula berkarbon lima]] yaitu [[deoksiribosa]] (di tengah), sebuah [[nukleobasa]] yaitu [[adenina]] (kanan atas), dan sebuah gugus [[fosfat]] (kiri). Gula deoksiribosa bergabung dengan nukleobasa membentuk sebuah <u title="Nukleotida">[[deoksiribonukleosida]]</u> yang disebut [[deoksadenosina]], sedangkan keseluruhan struktur termasuk gugus fosfat adalah sebuah <u title="Deoksiadenosina monofosfat" href="deoksiadenosina monofosfat">nukleotida</u> dengan nama [[deoksiadenosina monofosfat]].]]
{{genetika}}
'''Nukleotida''' adalah [[senyawa organik]] yang terdiri dari sebuah [[nukleosida]] dan sebuah gugus [[fosfat]]. Ia berperan sebagai [[monomer]] yang menyusun [[polimer]] berupa [[asam nukleat]], yaitu asam deoksiribonukleat ([[DNA]]) dan asam ribonukleat ([[RNA]]); keduanya adalah [[biomolekul]] penting yang menyusun makhluk hidup di Bumi. Nukleotida diperoleh dari makanan dan juga disintesis di hati dari [[nutrien]].
Nukleotida tersusun dari tiga subunit, yaitu sebuah gugus basa nitrogen heterosiklik (yang disebut [[basa nukleotida]] atau nukleobasa), sebuah gula [[pentosa]] (berupa [[ribosa]] atau [[deoksiribosa]]), dan setidaknya satu gugus fosfat. Empat jenis nukleobasa pada DNA yaitu [[guanina]] (G), [[adenina]] (A), [[sitosina]] (C), dan [[timina]] (T); pada RNA, nukleobasa yang digunakan adalah [[urasil]] (U) alih-alih timina.
Nukleotida berperan penting dalam metabolisme di tingkat dasar dan seluler. Nukleotida mengandung energi kimia dalam bentuk [[nukleotida trifosfat]], yaitu [[adenosina trifosfat]] (ATP), [[guanosina trifosfat]] (GTP), [[sitidina trifosfat]] (CTG), dan [[uridina trifosfat]] (UTP). Paket energi ini tersebar di sel-sel tubuh dan menyediakan energi untuk fungsi metabolisme seperti sintesis asam amino, protein, [[membran sel]], dan [[organel]]; pergerakan sel dan organel (intraselular dan ekstraselular); hingga pembelahan sel melalui [[mitosis]] dan [[meiosis]].<ref name="Alberts">Alberts B, Johnson A, Lewis J, Raff M, Roberts K & Walter P (2002). ''Molecular Biology of the Cell'' (4th ed.). Garland Science. {{ISBN|0-8153-3218-1}}. pp. 120–121.</ref> Selain itu, nukleotida juga berpartisipasi dalam [[persinyalan sel]] melalui [[guanosina monofosfat siklik]] (cGMP) dan [[adenosina monofosfat siklik]] (cAMP), serta merupakan salah satu subunit untuk beberapa [[kofaktor]], seperti [[Koenzim A|CoA]], [[Flavin adenina dinukleotida|FAD]], FMN, [[Nikotinamida adenina dinukleotida|NAD]], dan [[Nikotinamida adenina dinukleotida fosfat|NADP]]⁺. Dalam [[sel (biologi)|sel]], kofaktor ini memainkan peran penting dalam fiksasi energi (misalnya [[fotosintesis]]), [[metabolisme]], dan [[transduksi sinyal seluler]].
Dalam biokimia eksperimental, nukleotida bisa bereaksi dengan [[radionuklida]] untuk membentuk radionukleotida. Proses ini dinamakan radiolabel dan sangat penting untuk mengeksplorasi mekanisme reaksi kimia.
== Struktur ==
[[Berkas:0322 DNA Nucleotides.jpg|jmpl|500px|al=|Susunan nukleotida dalam struktur asam nukleat. Kiri bawah: nukleotida monofosfat, basa nitrogennya mewakili satu sisi [[pasangan basa]]. Kanan atas: empat nukleotida membentuk dua pasangan basa, yaitu timina dengan adenina (dihubungkan dengan dua ikatan hidrogen), serta guanina dengan sitosina (dihubungkan dengan tiga ikatan hidrogen). Satu monomer nukleotida terhubung dengan nukleotida lainnya di bagian gugus gula dan fosfat masing-masing, membentuk dua "tulang punggung" (struktur unting ganda) dari asam nukleat, yang ditunjukkan di bagian kiri atas.]]
Sebuah nukleo<u>tida</u> tersusun atas tiga subunit kimiawi yang berbeda: molekul gula dengan lima atom karbon (disebut pentosa), sebuah gugus basa nitrogen [[Senyawa heterosiklik|heterosiklik]] (disebut [[basa nukleotida]] atau nukleobasa), serta paling tidak satu [[gugus fungsional|gugus]] [[fosfat]].<ref>{{Cite journal|last=Geuther|first=R.|date=1977|title=A. L. LEHNINGER, Biochemistry. The Molecular Basis of Cell Structure and Function (2nd Edition). 1104 S., zahlr. Abb., zahlr. Tab. New York 1975. Worth Publ. Inc. $ 17.50|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/jobm.19770170116|journal=Zeitschrift für allgemeine Mikrobiologie|language=en|volume=17|issue=1|pages=86–87|doi=10.1002/jobm.19770170116|issn=1521-4028}}</ref> Gabungan gula pentosa dan nukleobasa disebut [[Nukleosida|nukleo<u>sida</u>]]. Saat ketiga subunit itu bergabung, nukleotida juga disebut sebagai "nukleosida monofosfat", “nukleosida difosfat”, atau “[[monosakarida]] trifosfat”, bergantung pada jumlah fosfat yang menyusunnya.{{efn|Sumber kimia ACS Style Guide dan IUPAC Gold Book<ref>{{Cite web|url=http://goldbook.iupac.org/html/N/N04255.html|title=IUPAC Gold Book - nucleotides|last=Chemistry|first=International Union of Pure and Applied|website=goldbook.iupac.org|language=en|access-date=2019-04-20}}</ref> menyatakan bahwa nukleotida hanya mempunyai satu gugus fosfat, tapi pengunaan istilah umum dalam buku pelajaran biologi molekuler memperluas definisinya untuk merangkum molekul dengan dua atau tiga gugus fosfat. Karena itu, istilah "nukleosida difosfat" atau "nukleosida trifosfat" juga bisa dinyatakan sebagai nukleotida.}}
Dalam [[asam nukleat]], nukleotida mengandung basa nitrogen berupa [[purina]] (terdiri dari [[adenina]] atau [[guanina]]) atau [[pirimidina]] (terdiri dari [[timina]], [[sitosina]] atau [[urasil]]), dan disebut sebagai ribonukleotida jika gulanya adalah [[ribosa]] atau deoksiribonukleotida jika gulanya adalah [[deoksiribosa]]. Pada dua monomer nukleotida yang berdekatan, gugus fosfat dari satu nukleotida dihubungkan dengan gula pentosa dari nukleotida lainnya melalui karbon nomor 5 (disebut 5') oleh ikatan ester kovalen. Ikatan ini dinamakan ikatan fosfodiester. Ikatan antara satu nukleotida dengan lainnya membentuk satu rantai panjang yang dinamakan rantai polinukleotida. Rantai dari gabungan molekul gula dan fosfat ini menciptakan unting sebagai 'tulang punggung' berbentuk pilinan tunggal atau [[Pilinan ganda|ganda]]. Dalam satu unting, orientasi kimiawi (arah) dari rantai disebutkan dari ujung-5' ke ujung-3'. Angka ini mengacu pada lima lokasi karbon di molekul gula pada nukleotida-nukleotida yang berdekatan. Dalam pilinan ganda, kedua unting memiliki orientasi yang berlawanan. Satu rantai mempunyai orientasi dari 5' ke 3', sedangkan rantai lainnya mempunyai orientasi dari 3' ke 5'. Hal ini memungkinkan [[pasangan basa]] saling bersifat komplementer di antara mereka. Semua sifat ini berperan penting dalam [[replikasi DNA]] serta [[Transkripsi (genetik)|transkripsi]] informasi genetik yang disandi di dalam DNA.
Basa purin, yaitu adenina (A) dan guanina (G), serta basa pirimidin, yaitu sitosina (C), ditemukan baik pada DNA maupun RNA. Sementara itu, basa pirimidin yaitu timina (T) hanya ditemukan pasa DNA saja, sedangkan urasil (U) hanya ditemukan pada RNA saja. Adenina terhubung dengan timin membentuk pasangan basa melalui dua [[ikatan hidrogen]], sedangkan guanina berpasangan dengan sitosina dengan tiga ikatan hidrogen.
Selain menjadi blok pembangun untuk asam nukleat, nukleotida tunggal berperan dalam penyimpanan dan penyediaan energi seluler, [[persinyalan sel]]uler, sebagai sumber gugus fosfat yang digunakan untuk memodulasi aktivitas protein dan molekul persinyalan lainnya, dan sebagai kofaktor enzimatik yang sering melakukan reaksi [[redoks]]. [[Nukleotida siklik]] dalam persinyalan dibentuk dengan mengikat gugus fosfat dua kali ke molekul gula yang sama, dan menjembatani gugus hidroksil 5' dan 3' dari gula.<ref name="Alberts" /> Beberapa nukleotida persinyalan memiliki konfigurasi gugus fosfat yang berbeda karena mereka memiliki beberapa gugus fosfat yang terikat pada lokasi berbeda pada gula.<ref>{{cite book|year=2000|title=Oxford Dictionary of Biochemistry and Molecular Biology, Revised edition|location=Oxford|publisher=Oxford University Press|editor-last=Smith|editor-first=A. D.|page=460}}</ref> Kofaktor nukleotida mengandung gugus kimia yang lebih luas yang terikat pada gula melalui [[ikatan glikosidik]], termasuk [[nikotinamida]] dan [[flavin]]; dalam kasus flavin, gula ribosa lebih linier dibandingkan bentuk cincin yang terlihat pada nukleotida lain.
[[Berkas:Nucleotides.png|jmpl|center|660px|Unsur-unsur struktural pada nukleo<u>tida</u> — ketika satu, dua atau tiga gugus fosfat berikatan dengan nukleo<u>sida</u> (kuning, biru dan hijau) di bagian tengah. Suatu nukleotida dinamakan ''nukleosida <u>mono</u>fosfat'' jika memiliki satu gugus fosfat (merah). Penambahan gugus fosfat yang kedua membentuk ''nukleosida <u>di</u>fosfat''. Penambahan gugus fosfat yang ketiga membentuk ''nukleosida <u>tri</u>fosfat''. Basa nukleosida dilabel sebagai "''Base''" dan "''glycosidic bond''" (ikatan glikosidik). Lima basa nukleosida—kelompok purina dan pirimida—dicantumkan di bagian kanan (biru).]]
{{Gallery
|title=Contoh nukleotida non-asam nukleat
|lines=4
|align=center
|File:Cyclic-AMPchemdraw.png|[[Adenosina monofosfat siklik|cAMP]], sebuah nukleotida siklik yang berperan sebagai molekul persinyalan dengan fosfat tunggal yang berikatan dengan posisi 5- dan 3-.
|File:PppGpp.svg|[[Guanosina pentafosfat|pppGpp]], sebuah nukleotida molekul persinyalan dengan fosfat 5'- dan 3'-.
|File:NADP+ phys.svg|[[Nikotinamida adenina dinukleotida fosfat|NADP]], sebuah dinukleotida sebagai kofaktor enzimatik.
|File:FAD.png|[[Flavin adenina dinukleotida|FAD]], sebuah dinukleotida kofaktor enzimatik dengan salah satu gula ribosa mengadopsi konfigurasi linear alih-alih cincin.}}
== Sintesis ==
Nukleotida dapat disintesis baik secara ''[[in vitro]]'' maupun ''[[in vivo]]''.
Secara ''in vitro'', [[gugus pelindung]] bisa dipakai dalam produksi nukleotida di laboratorium. Nukleosida yang dimurnikan kemudian dilindungi untuk membentuk fosforamidit, yang selanjutnya digunakan untuk membentuk analog yang tidak ditemukan di bumi atau digunakan untuk oligonukleotida sintesisasi.
Secara ''in vivo'', nukleotida bisa disintesis de novo atau didaur ulang melalui jalur reaksi penyelamatan. Komponen yang digunakan dalam sintesis nukleotida de novo berasal dari prekursor biosintetik dari metabolisme karbohidrat dan asam amino, dan dari amonia dan karbon dioksida. Hati adalah organ penting yang melakukan sintesis de novo untuk semua nukleotida. Sintesis de novo untuk basa pirimidina dan purina melalui dua jalur yang berbeda. Pirimidina disintesis pertama dari aspartat dan karbamoil fosfat di dalam sitoplasma, membentuk struktur prekursor cincin umum asam orotik. Gugus ribosil yang difosforilasi kemudian digabungkan dengan struktur asam orotik tersebut, melalui ikatan kovalen. Purina disintesis pertama dari templat gula dimana sintesis ring dilakukan. Sintesis nukleotida pirimidina dan purina dijalankan oleh beberapa enzim di sitoplasma, bukan di dalam organel tertentu. Nukleotida mengalami penguraian dan bagian-bagian berguna bisa digunakan kembali dalam reaksi sintesis untuk membuat nukleotida baru.
=== Sintesis nukleotida pirimidina ===
[[Berkas:Nucleotides_syn2.png|Sintesis UMP — Skema warna: <span style="font-weight: bold;"><span style="color: blue;">enzim</span>, <span style="color: rgb(219,155,36);">koenzim</span>, <span style="color: rgb(151,149,45);">nama substrat</span>, <span style="color: rgb(227,13,196);">ion logam</span>, <span style="color: rgb(128,0,0);">molekul anorganik</span> </span>|jmpl|al=|400x400px]]Sintesis pirimidina CTP dan UTP dilakukan di sitoplasma dan dimulai dengan pembentukan karbamoil fosfat dari [[glutamina]] dan karbon dioksida, Selanjutnya, enzim aspartat karbamoil fosfat transferase mengkatalisis reaksi kondensasi antara aspartat dan karbamoil fosfat untuk membentuk asam karbamoil aspartik, yang kemudian disiklisasi menjadi 4,5-asam dihidrotik dengan bantuan enzim dihidroorotase. 4,5-asam dihidrotik dikonversi menjadi orotat oleh enzim dihidroorotate oksidase. Reaksi ini adalah:
(''S'')-Dihydroorotate + O<sub>2</sub> → Orotate + H<sub>2</sub>O<sub>2</sub>
Selanjutnya, orotat digabung dengan gugus ribosil yang telah difosforilasi, melalui ikatan kovalen. Ikatan kovalen antara ribosa dan pirimidina berada di posisi karbon 1 (C<sub>1</sub>) di gugus ribosa, yang mengandung satu pirofosfat, dan posisi nitrogen 1 (N<sub>1</sub>), di cincin pirimidina. Orotate fosforibosyl transferase (PRPP transferase) mengkatalisasi reaksi yang menghasilkan orotidina monofosfat (OMP):
Orotate + 5-Phospho-α-D-ribose 1-diphosphate (PRPP) → Orotidine 5'-phosphate + Pyrophosphate
Orotidina 5'-monofosfat kemudian dekarboksilasi oleh orotidina-5'-fosfat dekarboksilase untuk membentuk uridina monofosfat (UMP). PRPP transferase mengkatalisasi reaksi ribosilasi dan dekarboksilasi, membentuk UMP dari asam orotik dalam kandungan PRPP. Nukleotida pirimidina lain diturunkan dari UMP. Kemudian, UMP difosforilasi oleh dua enzim kinase untuk membentuk uridina trifosfat (UTP) melalui dua reaksi berurutan dengan ATP. Pertama, difosfat membentuk UDP itu diproduksi, dan kemudian difosforilasi menjadi UTP. Kedua reaksi memakai ATP untuk energi melalui hidrolisis ATP:
ATP + UMP → ADP + UDP
UDP + ATP → UTP + ADP
Selanjutnya, CTP dibentuk oleh reaksi aminasi UTP melalui aktivitas katalisasi dari enzim CTP sintetase. [[Glutamina]] adalah donor NH<sub>3</sub> dan reaksi tersebut memakai energi melalui hidrolisis ATP.
UTP + Glutamine + ATP + H<sub>2</sub>O → CTP + ADP + P<sub>i</sub>
Sitidina monofosfat (CMP) berasal dari sitidina trifosfat (CTP) melalui kehilangan dua gugus fosfat.
=== Sintesis nukleotida purina ===
Atom yang digunakan untuk membangun nukleotida purina berasal dari berbagai sumber:[[Berkas:Nucleotides_syn1.png|Sintesis IMP — Skema warna: '''<span style="font-weight: bold;"><span style="color: blue;">enzim</span>, <span style="color: rgb(219,155,36);">koenzim</span>, <span style="color: rgb(151,149,45);">nama substrat</span>, <span style="color: rgb(227,13,196);">ion logam</span>, <span style="color: rgb(128,0,0);">molekul anorganik</span></span>'''|jmpl|al=|600x541px]]
{| class="wikitable" style="margin: 1em auto 1em auto"
| [[Berkas:Nucleotide synthesis.svg|250px]] ||'''Asal biosintesis atom-atom yang membentuk cincin purina'''<br><br>N<sub>1</sub> berasal dari gugus amina [[Asam aspartat|Asp]]<br>C<sub>2</sub> dan C<sub>8</sub> berasal dari formate<br>N<sub>3</sub> dan N<sub>9</sub> disumbangkan dari group amina berasal dari [[Glutamina|Gln]]<br>C<sub>4</sub>, C<sub>5</sub> dan N<sub>7</sub> diturunkan dari [[Glisina|Gly]] <br>C<sub>6</sub> berasal dari HCO<sub>3</sub><sup>−</sup> (CO<sub>2</sub>)
|}
Sintesis de novo untuk nukleotida purina dijalankan dengan prekursors yang dimasukkan ke dalam cincin purina melalui jalur 10 langkah ke senyawa perantara IMP, nukleotida dari basa hipoksantin. AMP dan GMP selanjutnya disintesis dari senyawa prenantara ini melalui jalur terpisah dua langkah. Karena itu, gugus purin pada awalnya terbentuk sebagai bagian dari ribonukleotida, dan bukan sebagai basa bebas.
Enam enzim terlibat dalam reaksi sintesis IMP. Di antara enzim itu, tiga enzim mempunyai peran multifungsi:
* GART (reaksi 2, 3 dan 5)
* PAICS (reaksi 6 dan 7)
* ATIC (reaksi 9 dan 10)
Jalur reaksi termulai dengan pembentukan PRPP. PRPS1 adalah enzim yang mengaktifkan R5P, yang dibentuk oleh jalur pentosa fosfat, menjadi PRPP yang dibuat reaksi dengan ATP. Reaksi ini tidak biasa karena gugus pirofosforil ditransfer langsung dari ATP ke C<sub>1</sub> dari R5P, dan senyawa yang terbentuk mempunyai konfigurasi '''α''' di C<sub>1</sub>. Reaksi ini juga berbagi dengan jalur sintesis asam amino [[Triptofan|Trp]], [[Histidina|His]] dan nukleotida pirimidina. Reaksi ini sangat diatur karena reaksi ini berada di dalam metabolisme utama dan memakai banyak energi.
Dalam reaksi pertama yang unik hanya untuk sintesis nukleotida purina, PPAT mengkatalisis perpindahan gugus pirofosfat (PP<sub>i</sub>) dari PRPP melalui gugus nitrogen amida disumbangkan oleh [[glutamina]] (N), [[glisina]] (N dan C), [[asam aspartat]] (N), [[asam folat]] (C<sub>1</sub>) atau [[karbon dioksida]]. Ini adalah langkah berkomitmen dalam sintesis purina. Reaksi ini terjadi dengan inversi konfigurasi di ribosa C<sub>1</sub>, yang kemudian membentuk '''β'''-5-fosforibosilamine (5-PRA) dan meneguhkan bentuk anomerik nukleotida mendatang.
Selanjutnya, glisina dimasukkan dengan energi dari hidrolisis ATP dan gugus karboksil membuat ikatan amina dengan NH<sub>2</sub> dari sebelumnya. Satu-karbon unit dari koenzim asam folat N<sub>10</sub>-formyl-THF kemudia ditambahkan ke gugus amina dari glisina yang disubtitusi, diikuti dengan penutupan cinicin imidazole. Kemudian, gugus NH<sub>2</sub> kedua ditransfer dari glutamina ke karbon pertama dari gugus glisina. Karboksilasi satu-karbon unit kedua dari gugus glisina ditambahkan secara bersama. Gugus karbon baru ini kemudian dimodifikasi dengan menambahkan gugus NH<sub>2</sub> ketiga, kali ini ditransfer dari residu aspartat. Akhirnya, satu-karbon unit kedua dari formil THF ditambahkan ke gugu nitrogen dan cincin itu ditutupkan secara kovalen untuk membentuk gugus prekursor purina umum inosin monofosfat (IMP).
Inosin monofosfat dikonversi ke adenosin monofosfat melalui dua langkah. Pertama, hidrolisis GTP menyediakan energi untuk menambahkan aspartat ke IMP oleh enzim adenilosuccinate sintase, menggantikan oksigen karbonil dengan nitrogen dan membentuk senyawa perantara adenilosuccinate. Kemudia, fumarat dibelah untuk membentuk adenosin monofosfat. Langkah ini dikatalisis oleh enzim adenilosuccinate liase.
Inosin monofosfate dikonversi ke guanosin monofosfate melalui reaksi oksidasi IMP membentuk xantilat, diikuti dengan penyisipan gugus amina di C<sub>2</sub>. NAD<sup>+</sup> adalah akseptor elektron di reaksi oksidasi ini. Transfer gugus amida didorong oleh energi dari hidrolisis ATP.
=== Degradasi purina dan pirimidina ===
Dalam tubuh manusia, cincin pirimidina (C,T, U) dapat didegradasi sepenuhnya menjadi karbon dioksida, CO<sub>2</sub> dan NH<sub>3</sub> (ekskresi urea). Cincin purina (G, A) tidak bisa didegradasi melalui jalur yang sama. Cincin purina didegradasi menjadi asam urat yang selanjutnya dikeluarkan dari tubuh. Asam urat terbentuk ketika GMP dibelah menjadi basa guanina dan ribosa. Guanina dideaminasi menjadi xantin, yang selanjutnya dioksidasi menjadi asam urat. Reaksi terakhir ini permanen. Demikian pula, asam urat bisa dibentuk ketika AMP dideaminasi untuk membentuk IMP, yang menjadi sumber gugus ribosa yang dikeluarkan untuk membentuk hipoksantin. Hipoksantin dioksidasi menjadi xantin dan selanjutnya menjadi asam urat. Guanina dan IMP bisa digunakan untuk daur ulang untuk reaksi sintesis asam nukleat di dalam kandungan PRPP dan aspartat (sebagai donor NH<sub>3</sub>).
== Kode singkatan ==
Nama-nama nukleotida disingkat menjadi kode empat-huruf standar. Huruf pertama berupa huruf kecil dan menandakan bawa nukleotida yang dipertanyakan adalah sebuah [[ribonukleotida]] (r) atau deoxiribonukleotida (d). Huruf ke-2 menandakan [[nukleosida]] yang berhubungan dengan [[nukleobasa]]:
: G: [[Guanina]]
: A: [[Adenina]]
: T: [[Timina]]
: C: [[Sitosina]]
: U: [[Urasil]] ''biasanya tidak ada dalam DNA, tetapi menggantikan [[timina]] pada RNA''
Huruf ke-3 dan ke-4 menandakan panjang dari rantai fosfat yang terikat (Mono-, Di-, Tri-) dan keberadaan sebuah fosfat (P). Sebagai contoh, deoksi-sitidin-trifosfat disingkat sebagai dCTP.
{| class="wikitable" style="vertical-align:top; margin-left:25px; margin-top:10px; margin-right:25px; margin-bottom:25px; text-align:center;"
|-
! Simbol<ref name="iupac">{{cite web |url=http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html |author=Nomenclature Committee of the International Union of Biochemistry (NC-IUB) |title=Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences |date=1984 |access-date=2008-02-04}}</ref> !! Deskripsi !!colspan=5| Basa
|-
| '''A''' || align="left" | '''a'''denina || A || || || ||rowspan=5| 1
|-
| '''C''' || align="left" | '''''c'''ytosine'' (sitosina) || || C || ||
|-
| '''G''' || align="left" | '''g'''uanina || || || G ||
|-
| '''T''' || align="left" | '''t'''imina || || || || T
|-
| '''U''' || align="left" | '''u'''rasil || || || || U
|- bgcolor=#e8e8e8
| '''W''' ||align=left| '''''w'''eak'' (lemah) || A || || || T ||rowspan=6| 2
|- bgcolor=#e8e8e8
| '''S''' ||align=left| '''''s'''trong'' (kuat)|| || C || G ||
|- bgcolor=#e8e8e8
| '''M''' ||align=left| [[Amina|a'''m'''ino]] || A || C || ||
|- bgcolor=#e8e8e8
| '''K''' ||align=left| [[Keton|'''k'''eto]] || || || G || T
|- bgcolor=#e8e8e8
| '''R''' ||align=left| [[Purina|pu'''r'''ina]] || A || || G ||
|- bgcolor=#e8e8e8
| '''Y''' ||align=left| [[Pirimidina|''p'''y'''rimidine'' (pirimidina)]] || || C || || T
|-
| '''B''' ||align=left| bukan A (huruf '''B''' setelah A) || || C || G || T ||rowspan=4| 3
|-
| '''D''' ||align=left| bukan C (huruf '''D''' setelah C) || A || || G || T
|-
| '''H''' ||align=left| bukan G (huruf '''H''' setelah G)|| A || C || || T
|-
| '''V''' ||align=left| bukan T (huruf '''V''' setelah T dan U) || A || C || G ||
|- bgcolor=#e8e8e8
| '''N''' ||align=left| ''a'''n'''y base'' (basa apa saja, bukan kosong) || A || C || G || T || 4
|}
== Lihat pula ==
* [[Gen]]
* [[Genetika]]
* [[Kromosom]]
* [[Asam ribonukleat]]
* [[Asam deoksiribonukleat]]
==
{{notelist}}
== Rujukan ==
{{reflist}}
== Pranala luar ==
{{Commons category|Nucleotides}}
* {{en}} [http://www.chem.qmul.ac.uk/iupac/misc/naabb.html Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents] ([[IUPAC]])
* {{en}} [http://www.iupac.org/reports/provisional/abstract04/BB-prs310305/Chapter10.pdf Provisional Recommendations 2004] (IUPAC)
{{clear}}
{{Nukleobasa, nukleosida, dan nukleotida}}
{{Asam nukleat}}
{{Authority control}}
[[Kategori:DNA]]
|