Akar fungsi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Menghapus Kategori:Fungsi dan pemetaan; Menambah Kategori:Fungsi matematika menggunakan HotCat |
Fitur saranan suntingan: 2 pranala ditambahkan. |
||
(2 revisi perantara oleh 2 pengguna tidak ditampilkan) | |||
Baris 1:
{{periksa terjemahan|1=en|2=Zero of a function}}{{short description|Elemen domain yang nilai fungsinya nol}}
{{redirect|Akar polinomial|cara menemukan akar
{{redirect|Akar dari sebuah fungsi | setengah iterasi dari sebuah fungsi|Akar kuadrat fungsional}}
{{Css Image Crop |Image = X-intercepts.svg |bSize = 300 |cWidth = 300 |cHeight = 110 |oLeft = 0 |oTop = 100 |Location = right |Description = Grafik fungsi cos(''x'') pada domain <math>\scriptstyle{[-2\pi,2\pi]}</math>. ''x'' ditandai dengan warna merah. Akar fungsi di dalam grafik ini adalah ''x''=<math>\scriptstyle\frac{-3\pi}{2}</math>, <math>\scriptstyle\frac{-\pi}{2}</math>, <math>\scriptstyle\frac{\pi}{2}</math> dan <math>\scriptstyle\frac{3\pi}{2}</math>.}}
Dalam
:{{math|1=''f''(''x'') = 0.}}
'''Akar''' dari sebuah [[polinomial]] adalah nol dari [[fungsi polinomial]] yang sesuai.<ref name=":0">{{Cite web|title=Algebra - Zeroes/Roots of Polynomials|url=http://tutorial.math.lamar.edu/Classes/Alg/ZeroesOfPolynomials.aspx|website=tutorial.math.lamar.edu|access-date=2019-12-15}}</ref> [[Teorema dasar aljabar]]
:<math>f(
Untuk mencari akar suatu [[fungsi polinomial]], diperlukan metode [[aproksimasi]] (seperti [[metode Newton]]). Namun, beberapa fungsi polinomial dengan derajat yang tidak lebih tinggi dari 4 dapat dicari akarnya dengan menggunakan [[aljabar]].
Jika fungsi memetakan bilangan real ke bilangan real, maka akarnya adalah nilai kordinat-<math> x </math> titik perpotongan [[Grafik fungsi|grafik]] dengan [[Sistem koordinat Cartesius|sumbu-''x'']].
== Solusi persamaan ==
Baris 31 ⟶ 23:
== Akar polinomial ==
{{main|Sifat dari akar polinom}}
Setiap polinom nyata ganjil [[Derajat polinomial|derajat]] memiliki bilangan ganjil dari akar nyata (menghitung [[Multiplisitas (matematika)#Keragaman dari sebuah akar polinomial|multiplisitas]]); demikian pula, polinomial nyata dengan derajat genap harus memiliki bilangan genap dari akar nyata. Akibatnya, polinomial ganjil nyata harus memiliki setidaknya satu akar nyata (karena [[bilangan bulat]] ganjil terkecil adalah 1), sedangkan polinomial genap mungkin tidak memiliki. Prinsip ini dapat dibuktikan dengan mengacu pada [[teorema nilai tengah]]: karena fungsi polinomial adalah [[Fungsi kontinu|kontinu]], nilai fungsi harus melewati nol, dalam proses perubahan dari negatif ke positif atau sebaliknya (yang selalu terjadi untuk [[Fungsi ganjil dan genap|fungsi ganjil]]).
=== Teorema dasar aljabar ===
Baris 72 ⟶ 64:
[[Kategori:Fungsi matematika]]
[[Kategori:0 (angka)]]
|