Besi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
|||
(68 revisi perantara oleh 33 pengguna tidak ditampilkan) | |||
Baris 1:
{{kotak info besi}}
'''Besi''' adalah [[unsur kimia]] dengan simbol '''Fe''' (dari {{lang-la|ferrum}}) dan [[nomor atom]] 26.
Seperti [[unsur golongan 8]] lainnya, besi berada pada rentang [[Bilangan oksidasi|tingkat oksidasi]] yang lebar, −2 hingga +6, meskipun +2 dan +3 adalah yang paling banyak. Unsur besi terdapat dalam [[meteorit]] dan lingkungan rendah [[oksigen]] lainnya, tetapi reaktif dengan oksigen dan [[air]]. Permukaan besi segar
Logam besi telah digunakan sejak [[Zaman Besi|zaman purba]], meskipun [[Logam paduan|paduan]] [[tembaga]], yang memiliki titik lebur lebih rendah, yang digunakan lebih awal dalam sejarah manusia. Besi murni relatif lembut, tetapi tidak bisa didapat melalui [[Peleburan (metalurgi)|peleburan]]. Materi ini mengeras dan diperkuat secara signifikan oleh kotoran, [[karbon]] khususnya, dari proses peleburan. Dengan proporsi karbon tertentu (antara 0,002% dan 2,1%) menghasilkan [[baja]], yang lebih keras dari besi murni, mungkin sampai 1000 kali. Logam besi mentah diproduksi di [[tanur tinggi]],
Senyawa kimia besi memiliki banyak manfaat. Besi oksida dicampur dengan serbuk aluminium dapat dipantik untuk membuat [[reaksi termit]], yang digunakan dalam pengelasan dan pemurnian bijih. Besi membentuk senyawa biner dengan [[halogen]] dan [[kalsogen]]. Senyawa organologamnya antara lain [[ferosen]], [[senyawa sandwich]] pertama yang ditemukan.
Baris 57:
|}
Sifat mekanik besi dan paduannya dapat dievaluasi menggunakan berbagai uji, termasuk [[Timbangan Brinell|uji Brinell]], [[Timbangan Rockwell|uji Rockwell]] dan [[uji kekerasan Vickers]]. Data pada besi begitu konsisten sehingga sering digunakan untuk kalibrasi peralatan atau uji perbandingan.<ref name=corr/><ref>{{cite web| url=http://mdmetric.com/tech/hardnessconversion.html| title=Hardness Conversion Chart| accessdate=23 May 2010| publisher=Maryland Metrics| archive-date=2015-06-18| archive-url=https://web.archive.org/web/20150618071701/http://mdmetric.com/tech/hardnessconversion.html| dead-url=yes}}</ref> Namun, sifat mekanik besi sangat dipengaruhi oleh kemurnian sampel: besi murni kristal tunggal untuk keperluan penenelitian faktanya lebih lunak daripada aluminium,<ref name=pure/> dan besi hasil produksi industri yang paling murni (99,99%) memiliki kekerasan 20–30 Brinell.<ref>{{Cite journal| title=Properties of Various Pure Irons: Study on pure iron I| url=http://ci.nii.ac.jp/naid/110001459778/en| volume=50| issue=1| pages=42–47| journal=Tetsu-to-Hagane| first1 = Kusakawa|last1 = Takaji|first2 = Otani|last2 =Toshikatsu| date=1964}}</ref> Kenaikan kandungan karbon dalam besi akan menyebabkan kenaikan yang signifikan pada kekerasan dan kekuatan tarik. Kekerasan maksimum [[Timbangan Rockwell|65 R<sub>c</sub>]] dicapai dengan kadar karbon 0.6%, meskipun prosedur ini untuk logam dengan daya tarik rendah<ref>{{Cite book|url=https://books.google.com/?id=LgB5dkmPML0C&pg=PA218|page=218|title=Materials Science and Engineering|first=V.|last= Raghavan|publisher =PHI Learning Pvt. Ltd.|isbn=81-203-2455-2|date=2004}}</ref>
[[Berkas:Iron-alpha-pV.svg|
Karena signifikansinya untuk inti planet, sifat fisik besi pada tekanan dan suhu tinggi juga telah dipelajari secara mendalam. Bentuk besi yang stabil di bawah kondisi standar dapat mengalami tekanan hingga 15 GPa sebelum berubah menjadi bentuk tekanan tinggi, seperti yang dijelaskan pada bagian selanjutnya.
Baris 64:
{{Main|Alotrop besi}}
Besi merupakan contoh [[alotropi]] pada logam. Setidaknya ada empat bentuk alotrop besi, yang dikenal sebagai α, γ, δ, dan ε; pada tekanan yang sangat tinggi dengan volume yang rendah, beberapa bukti eksperimental yang kontroversial ada untuk fase β yang stabil pada tekanan dan suhu yang sangat tinggi.<ref name="beta-iron">{{Cite journal| first = Reinhard| last = Boehler|title = High-pressure experiments and the phase diagram of lower mantle and core materials| journal = Review of Geophysics| volume = 38| pages = 221–245| publisher = American Geophysical Union| date = 2000| doi=10.1029/1998RG000053| issue = 2| bibcode=2000RvGeo..38..221B}}</ref>
[[Berkas:Pure iron phase diagram (EN).png|
Besi cair dingin mengkristal pada 1538 °C ke alotrop δ, yang memiliki struktur kristal ''[[body-centered cubic]]'' (bcc). Setelah mendingin lebih lanjut menjadi 1394 °C, berubah menjadi besi alotrop γ, dengan struktur kristal ''[[face-centered cubic]]'' (fcc), atau [[austenit]]. Pada 912 °C atau lebih rendah, struktur kristal berubah kembali menjadi alotrop besi α bcc, atau [[Ferit (besi)|ferit]]. Akhirnya, pada 770 °C ([[titik Curie]], Tc) besi menjadi [[magnet]]. Ketika besi melewati suhu Curie tidak ada perubahan dalam struktur kristal, tetapi ada perubahan dalam "struktur domain", di mana setiap domain mengandung atom besi dengan spin elektron tertentu. Dalam besi non magnet, semua spin elektron dari atom dalam satu domain berada dalam arah yang sama, namun, domain sekitarnya menunjuk ke berbagai arah lain sehingga dengan demikian secara keseluruhan mereka menetralkan satu sama lain. Hasilnya, besi tidak bersifat magnet. Dalam besi magnet, spin elektron dari semua domain selaras, sehingga efek magnetik domain tetangga saling memperkuat. Meskipun setiap domain mengandung miliaran atom, ukuran mereka sangat kecil, hanya sekitar 10 mikrometer.<ref name="Metallo">{{Cite book|url = https://books.google.com/?id=hoM8VJHTt24C&pg=PA24|pages=24–28|title =Metallographer's guide: practice and procedures for irons and steels|first1 = B. L.|last1 = Bramfitt|first2= Arlan O.|last2 = Benscoter|chapter = The Iron Carbon Phase Diagram|publisher = ASM International|date = 2002|isbn = 978-0-87170-748-2}}</ref> Pada tekanan di atas sekitar 10 GPa dan suhu beberapa ratus kelvin atau kurang, besi-α berubah menjadi struktur [[hexagonal close-packed]] (hcp), yang juga dikenal sebagai [[Heksaferum|besi-ε]]; fase-γ yang temperaturnya lebih tinggi juga berubah menjadi besi-ε, tetapi tidak terjadi pada tekanan yang lebih tinggi. [[Beta ferit|Fase-β]], jika ada, akan muncul pada tekanan minimal 50 GPa dan suhu minimal 1.500 K; telah diperkirakan memiliki struktur ortorombik atau struktur hcp ganda.<ref name="beta-iron" />
Baris 84:
<sup>60</sup>Fe adalah [[radionuklida yang telah punah]] dengan [[waktu paruh]] panjang (2,6 juta tahun).<ref name="RugelFaestermann2009">{{cite journal|last1=Rugel|first1=G.|last2=Faestermann|first2=T.|last3=Knie|first3=K.|last4=Korschinek|first4=G.|last5=Poutivtsev|first5=M.|last6=Schumann|first6=D.|last7=Kivel|first7=N.|last8=Günther-Leopold|first8=I.|last9=Weinreich|first9=R.|last10=Wohlmuther|first10=M.|title=New Measurement of the <sup>60</sup>Fe Half-Life|journal=Physical Review Letters|volume=103|issue=7|date=2009|issn=0031-9007|doi=10.1103/PhysRevLett.103.072502}}</ref> Ia tidak ditemukan di bumi, namun produk peluruhan utamanya adalah nuklida stabil [[nikel-60]].
Banyak riset masa lalu tentang pengukuran komposisi isotop Fe telah difokuskan pada penentuan variasi <sup>60</sup>Fe karena proses yang menyertai [[nukleosintesis]] (yaitu, studi [[meteorit]]) dan formasi bijih. Namun dalam dekade terakhir, perkembangan teknologi [[spektrometri massa]] telah memungkinkan untuk melakukan deteksi dan kuantifikasi renik, variasi rasio alami [[isotop stabil]] besi. Banyak dari penelitian ini telah didorong oleh komunitas [[ilmu bumi]] dan [[ilmu planet|planet]], meskipun aplikasi untuk sistem biologis dan industri mulai bermunculan.<ref>{{Cite journal|last1=Dauphas|first1
Isotop besi yang paling melimpah {{Sup|56}}Fe merupakan daya tarik tersendiri bagi para ilmuwan nuklir karena merupakan titik akhir nukleosintesis yang paling umum.Hal ini sering dikutip, secara salah, sebagai isotop dengan energi ikatan tertinggi, perbedaan yang sebenarnya dimiliki [[nikel-62]].<ref>{{cite journal|last1=Fewell|first1=M. P.|title=The atomic nuclide with the highest mean binding energy|journal=American Journal of Physics|volume=63|page=653|date=1995|doi=10.1119/1.17828|bibcode=1995AmJPh..63..653F|issue=7}}</ref> Karena <sup>56</sup>Ni mudah dihasilkan dari inti yang lebih ringan dalam [[proses alfa]] pada [[reaksi nuklir]] di supernova (lihat [[proses pembakaran silikon]]), nikel-56 (14 [[Partikel Alfa|partikel alfa]]) adalah titik akhir rantai fusi dalam [[Bintang Populasi III|bintang sangat besar]], karena penambahan partikel alfa lain akan menghasilkan seng-60, yang membutuhkan lebih banyak energi. Oleh karena itu, nikel-56, dengan waktu paruh sekitar 6 hari, merupakan porsi terbesar dalam bintang-bintang ini, tetapi segera meluruh melalui emisi positron berturutan pada produk peluruhan supernova dalam awan gas [[sisa supernova]]. Peluruhan pertama membentuk kobalt-56, dan kemudian besi-56 yang stabil. Nuklida terakhir ini kemudian menjadi relatif mayoritas di jagat raya, dibandingkan dengan [[Kemetalikan (Metallicity)|logam]] stabil lainnya dengan [[Massa atom|berat atom]] yang mendekati.
Dalam fase meteorit ''Semarkona'' dan ''Chervony Kut'' korelasi antara konsentrasi <sup>60</sup>Ni, [[Produk
Inti atom besi memiliki beberapa energi ikatan tertinggi per inti, hanya bisa diimbangi oleh [[isotop nikel]] <sup>62</sup>Ni. Ini terbentuk melalui [[fusi nuklir]] pada bintang. Meskipun penambahan sedikit energi dapat diekstraksi melalui sintesis <sup>62</sup>Ni, kondisi dalam bintang tidak cocok untuk proses ini. Distribusi unsur di Bumi lebih didominasi oleh besi daripada nikel, dan juga mungkin dalam produksi elemen supernova.<ref>{{cite journal|title = Iron and Nickel Abundances in H~II Regions and Supernova Remnants|date = 1995|bibcode=1995AAS...186.3707B|author=Bautista, Manuel A.|author2=Pradhan, Anil K.|journal=Bulletin of the American Astronomical Society|volume=27|page=865}}</ref>
Baris 95:
=== Nukleosintesis ===
Besi dibentuk oleh bintang yang sangat besar dengan inti yang sangat panas (lebih dari 2,5
=== Keberadaan ===
Baris 101:
==== Keberadaan di planet ====
[[Berkas:Widmanstatten hand.jpg|
Besi adalah [[Kelimpahan unsur kimia|unsur paling melimpah]] keenam di [[Alam semesta|jagat raya]], dan merupakan unsur [[refraktori]] yang paling umum.<ref name=apjl717_2_L92>{{cite journal
| last1=McDonald | first1=I. | last2=Sloan | first2=G. C.
Baris 119:
==== Cadangan yang digunakan di masyarakat ====
Menurut ''[[Metal Stocks in Society report]]'' yang dikeluarkan oleh [[Panel Sumber Daya Internasional]] ({{Lang-en|[[
== Kimia dan senyawa ==
Baris 149:
|}
Besi menunjukkan karakteristik sifat kimia [[logam transisi]], misalnya kemampuan membentuk tingkat oksidasi yang bervariasi dan mampu membentuk ikatan koordinasi dan kimia organologam: memang penemuan senyawa besi, [[ferosen]]<!--ferrocene-->, yang memberi perubahan revolusioner pada bidang ini pada akhir 1950an.<ref name=Greenwood905>Greenwood and Earnshaw, p. 905</ref> Besi kadang-kadang dianggap sebagai prototipe untuk seluruh blok logam transisi, karena kelimpahannya dan perannya yang besar sekali dalam perkembangan teknologi kemanusiaan.<ref name=Greenwood1070/> Keduapuluh enam elektronnya tertata dalam [[Konfigurasi elektron|konfigurasi]] [Ar]3d{{sup|6}}4s{{sup|2}}, yang elektron 3d dan 4s nya relatif memiliki energi yang berdekatan, sehingga dapat kehilangan elektron dalam jumlah yang bervariasi dan tidak ada titik yang jelas ionisasi lebih lanjut yang tidak menguntungkan.<ref name=Greenwood1074>Greenwood and Earnshaw, pp. 1074–5</ref>
Besi membentuk senyawa utamanya dalam [[Bilangan oksidasi|tingkat oksidasi]] +2 dan +3. Menurut tradisi, senyawa besi(II) disebut [[Fero (besi)|fero]] dan senyawa besi(III) disebut [[Feri (besi)|feri]]. Besi juga dapat memiliki tingkat oksidasi yang lebih tinggi, contohnya adalah [[kalium ferat]] (K<sub>2</sub>FeO<sub>4</sub>), berwarna ungu, yang mengandung besi dengan bilangan oksidasi +6. Besi(IV) adalah bentuk antara yang umum dalam banyak reaksi oksidasi biokimia.<ref>{{Cite journal| doi = 10.1021/ar700027f|title = High-Valent Iron(IV)–Oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions|date = 2007|last1 = Nam|first1 = Wonwoo|journal = Accounts of Chemical Research|volume = 40|pages = 522–531|pmid = 17469792|issue = 7}}</ref><ref name="HollemanAF">{{Cite book|publisher = Walter de Gruyter|date = 1985|edition = 91–100|pages = 1125–1146|isbn = 3-11-007511-3|title = Lehrbuch der Anorganischen Chemie|first1 = Arnold F.|last1 = Holleman|last2 = Wiberg|first2 = Egon|last3 = Wiberg|first3 = Nils|chapter = Iron|language = German}}</ref> Sejumlah senyawa organologam mengandung tingkat oksidasi formal +1, 0, −1, atau bahkan −2. Tingkat oksidasi dan sifat ikatan lainnya sering diuji menggunakan teknik spektroskopi Mössbauer.<ref>{{Cite book|chapter = Mössbauer Spectroscopy and the Coordination Chemistry of Iron|first1 = William Michael|last1 = Reiff|first2 = Gary J.|last2 = Long|title = Mössbauer spectroscopy applied to inorganic chemistry|publisher = Springer|date = 1984|isbn = 978-0-306-41647-7|pages = 245–283}}</ref> Terdapat juga banyak [[senyawa valensi campuran]] yang berintikan besi(II) dan besi(III) sekaligus, seperti [[magnetit]] dan [[biru Prusia]] (Fe<sub>4</sub>(Fe[CN]<sub>6</sub>)<sub>3</sub>).<ref name="HollemanAF" /> Senyawa yang disebutkan terakhir di atas digunakan sebagai "biru" tradisional dalam [[cetak biru]].<ref>{{Cite book|chapter = An introduction in monochrome|pages = 11–19|first = Mike|last = Ware|publisher = NMSI Trading Ltd|title = Cyanotype: the history, science and art of photographic printing in Prussian blue|isbn = 978-1-900747-07-3|date = 1999|url = https://books.google.com/?id=C-7I69gFIbMC&pg=PA11}}</ref>
[[Berkas:Iron(III) chloride hexahydrate.jpg|
Besi adalah logam transisi pertama yang tidak dapat mencapai keadaan oksidasi golongannya (+8), meskipun kongenernya yang lebih berat ruthenium dan osmium bisa,
Senyawa besi yang diproduksi dalam industri skala besar adalah [[besi(II) sulfat]] (FeSO<sub>4</sub>.7[[Air kristal|H<sub>2</sub>O]]) dan [[besi(III) klorida]] (FeCl3). Besi(II) sulfat adalah salah satu sumber besi(II) yang paling umum, tetapi kurang stabil terhadap oksidasi udara dibandingkan [[garam Mohr]] ((NH<sub>4</sub>)<sub>2</sub>Fe(SO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O). Senyawa besi(II) cenderung teroksidasi menjadi senyawa besi(III) di udara.<ref name="HollemanAF" />
Baris 165:
Besi bereaksi dengan oksigen di udara membentuk berbagai [[Besi oksida|senyawa oksida dan hidroksida]]; yang paling umum adalah [[besi(II,III) oksida]] (Fe<sub>3</sub>O<sub>4</sub>), dan [[besi(III) oksida]] (Fe<sub>2</sub>O<sub>3</sub>). [[Besi(II) oksida]] juga ada, meskipun tidak stabil pada temperatur kamar. Oksida-oksida ini adalah bijih utama untuk produksi besi (lihat ''[[bloomery]]'' dan tanur tinggi). Mereka juga digunakan dalam produksi [[Ferit (magnet)|ferit]], bermanfaat sebagai media [[penyimpanan magnetik]] di komputer, dan pigmen. Sulfida yang telah dikenal adalah [[besi pirit]] (FeS<sub>2</sub>), juga dikenal sebagai "emas bodoh" karena kilau keemasannya.<ref name="HollemanAF" />
[[Berkas:Pourbaix Diagram of Iron.svg|jmpl|ka|[[Diagram Pourbaix]] besi]]
Halida fero dan feri biner telah dikenal lama, dengan pengecualian feri iodida. Fero halida biasanya muncul dari pengolahan logam besi dengan asam halogen biner terkait untuk menghasilkan garam terhidrasi yang sesuai.<ref name="HollemanAF" />
:<chem>Fe +
Besi bereaksi dengan fluor, klorin, dan bromin menghasilkan feri halida yang sesuai. [[Feri klorida]] adalah yang paling umum:
:
Feri iodida adalah perkecualian, tidak stabil secara termodinamika karena sifat oksidator Fe{{sup|3+}} dan sifat reduktor I{{sup|−}}:<ref name=Greenwood1082>Greenwood and Earnshaw, p. 1082–4</ref>
:<math chem>\ce{2I^- + 2Fe^3+ -> I2 + 2Fe^2+}\quad (E^0 = +0{,}23\,\mathrm V)</math>
Namun, feri iodida dalam jumlah miligram, padatan hitam, tetap dapat dibuat melalui reaksi [[besi pentakarbonil]] dengan [[iodium]] dan [[karbon monoksida]] dengan adanya [[heksana]] dan cahaya pada suhu −20 °C. Perlu dipastikan bahwa sistem tertutup rapat agar terhindar dari udara dan air.<ref name=Greenwood1082/>
=== Kimia larutan ===
[[Berkas:Ferrate and permanganate solution.jpg|jmpl|100px|ka|Perbandingan warna larutan ferat (kiri) dan [[permanganat]] (kanan)]]
[[Potensial reduksi standar]] dalam larutan asam untuk beberapa ion besi yang umum adalah sebagai berikut:<ref name=Greenwood1075/>
{|
|-
| <chem>Fe^2+ + 2e^-</chem> || <chem><=> Fe</chem> || <math>\quad E^0 = -0{,}447\,\mathrm V</math>
|-
| <chem>Fe^3+ + 3e^-</chem> || <chem><=> Fe</chem> || <math>\quad E^0 = -0{,}037\,\mathrm V</math>
|-
| <chem>FeO4^2- + 8H^+ + 3e^-</chem> || <chem><=> Fe^3+ + 4H2O</chem> || <math>\quad E^0 = +2{,}20\,\mathrm{V}</math>
|}
Anion [[ferat]](VI) yang berbentuk tetrahedral dan berwarna merah-ungu adalah oksidator kuat yang dapat mengoksidasi nitrogen dan amonia pada suhu kamar, dan bahkan air dalam larutan asam atau netral:<ref name=Greenwood1082/>
:<chem>4FeO4^2- + 10H2O -> 4Fe^3+ + 20OH^- + 3O2</chem>
Ion Fe{{sup|3+}} memiliki kimia kationik sederhana yang besar, meskipun ion heksaquo [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> yang berwarna ungu pucat sangat mudah terhidrolisis ketika pH dinaikkan di atas 0 sebagai berikut:<ref name=Greenwood1088>Greenwood and Earnshaw, p. 1088–91</ref>
{|
|-
|<chem>[Fe(H2O)6]^3+</chem> || <chem><=> [Fe(H2O)5(OH)]^2+ + H^+</chem> || [[Konstanta kesetimbangan|<math>K</math>]] <math>=10^{-3{,}05}\,\mathrm{mol\,dm^{-3}}</math>
|-
|<chem>[Fe(H2O)5(OH)]^2+</chem> || <chem><=> [Fe(H2O)4(OH)2]^+ + H^+</chem> || <math>K = 10^{-3{,}26}\,\mathrm{mol\,dm^{-3}}</math>
|-
|<chem>2[Fe(H2O)6]^3+</chem> || <chem><=> [Fe(H2O)4(OH)]2^4+ + 2H^+ + 2H2O</chem> || <math>K = 10^{-2{,}91}\,\mathrm{mol\,dm^{-3}}</math>
|}
{{multiple image
<!-- Layout parameters -->
| align = right
| direction = horizontal
| background color = <!-- box background -->
| width = 200px
| caption_align =
<!-- Header -->
| header_background =
| header_align =
| header =
<!--image 1-->
| image1 = Iron(III)-oxide-sample.jpg
| width1 =
| alt1 =
| link1 =
| caption1 = [[Besi(III) oksida]] merah tua
<!--image 2-->
| image2 = Iron(II)-sulfate-heptahydrate-sample.jpg
| width2 =
| alt2 =
| link2 =
| caption2 = [[Besi(II) sulfat]] heptahidrat biru-hijau
<!-- and so on, to a maximum of 10 images (image10) -->
<!-- Footer -->
| footer_background =
| footer_align = <!-- left (default), center, right -->
| footer =
}}
Ketika pH naik di atas 0 terbentuk spesies hasil hidrolisis yang berwarna kuning, dan ketika dinaikkan di atas 2-3 terbentuk endapan [[besi(III) oksida]] hidrat yang berwarna coklat kemerahan. Meskipun Fe{{sup|3+}} memiliki konfigurasi d{{sup|5}}, spektrum serapannya tidak seperti Mn{{sup|2+}} dengan pita d-d spin terlarangnya yang lemah, karena Fe{{sup|3+}} memiliki muatan positif yang lebih tinggi dan lebih terpolarisasi. Ini melemahkan energi serapan [[Kompleks transfer muatan|transfer muatan]] ligan-ke-logam. Oleh karena itu, semua kompleks di atas memililki warna yang agak kuat, dengan satu perkecualian ion heksaquo - dan bahkan yang memiliki spektrum yang didominasi oleh transfer muatan di daerah ultraviolet dekat.<ref name=Greenwood1088/> Sebaliknya, ion besi(II) heksaquo [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> yang berwarna hijau pucat tidak mengalami hidrolisis. Karbon dioksida tidak muncul ketika ditambahkan anion [[karbonat]], malah menghasilkan endapan putih [[besi(II) karbonat]]. Dalam kondisi karbon dioksida berlebih, ini membentuk bikarbonat yang sedikit larut, yang jamak terjadi dalam air tanah, tetapi dengan cepat teroksidasi di udara membentuk [[besi(III) oksida]] yang menyebabkan endapan coklat di banyak aliran air.<ref name=Greenwood1091>Greenwood and Earnshaw, p. 1091–7</ref>
=== Senyawa koordinasi dan organologam ===
{{See also|Kimia organobesi}}
[[Berkas:Prussian blue.jpg|
Telah dikenal beberapa kompleks sianida. Contoh yang paling terkenal adalah [[biru Prusia]], (Fe<sub>4</sub>(Fe[CN]<sub>6</sub>)<sub>3</sub>). [[Kalium ferisianida]] dan [[kalium ferosianida]] juga telah diketahui; pembentukan biru Prusia pada reaksi dengan besi(II) dan besi(III) merupakan dasar "uji kimia basah".<ref name="HollemanAF" /> Biru Prusia juga digunakan sebagai antidot pada keracunan [[talium]] dan [[sesium]] radioaktif.<ref>{{cite web| url =http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130337.htm| title = Questions and Answers on Prussian Blue| accessdate = 6 June 2009}}</ref><ref>{{Cite journal| doi =10.1345/aph.1E024|pages = 1509–1514|pmid =15252192|title =Soluble or Insoluble Prussian Blue for Radiocesium and Thallium Poisoning?|first2 =ED|date =2004|last2 =Callen|last1 =Thompson|issue =9|first1 =D. F|journal =Annals of Pharmacotherapy|volume =38}}</ref> Biru Prusia dapat digunakan untuk mencuci pakaian guna menghilangkan noda kekuningan yang ditinggalkan oleh garam besi dalam air.
Telah dikenal beberapa senyawa karbonil besi. Senyawa besi(0) utama adalah [[besi pentakarbonil]], Fe(CO)<sub>5</sub>, yang digunakan untuk memproduksi serbuk [[karbonil besi]], bentuk yang sangat reaktif dari logam besi. Termolisis besi pentakarbonil menghasilkan gugus tiga-inti, [[triferum dodekakarbonil]]. Pereaksi Collman, [[dinatrium tetrakarbonilferat]], adalah pereaksi yang digunakan dalam kimia organik. Pereaksi ini mengandung besi dengan tingkat oksidasi −2. [[Siklopentadienilferum dikarbonil dimer]] mengandung besi dengan tingkat oksidasi yang langka, yaitu +1.<ref>{{Greenwood&Earnshaw1st|pages=1282–86}}.</ref>
[[Berkas:Ferrocene-2D.png|
Ferosen ({{Lang-en|[[
== Sejarah ==
Baris 185 ⟶ 250:
=== Besi tempa ===
{{further|Produksi besi purba}}
[[Berkas:Mars symbol.svg|
Besi telah digarap, atau [[Besi tempa|ditempa]], selama beberapa milenium. Namun,
Produksi besi pertama dimulai sejak [[Zaman Perunggu|Zaman Perunggu tengah]] tetapi memerlukan beberapa abad sebelum dapat menggantikan perunggu. Contoh [[Peleburan (metalurgi)|leburan]] besi dari [[Asmar (Mesopotamia)|Asmar]], Mesopotamia dan Tall Chagar Bazaar di Siria bagian utara dibuat antara 2.700 dan 3.000 SM.{{sfn|Weeks|1968|p=32}} [[Hittites]]
Artifak besi lebur ditemukan di [[Sejarah metalurgi di sub benua India|India]] berpenanggalan antara 1.800 hingga 1.200 SM,<ref name=Tewari>{{cite web| url = http://antiquity.ac.uk/projgall/tewari/tewari.pdf|first = Rakesh|last = Tewari|title = The origins of Iron Working in India: New evidence from the Central Ganga plain and the Eastern Vindhyas|publisher = State Archaeological Department|accessdate = 23 May 2010}}</ref> dan di [[Levant]] sejak sekitar 1.500 SM (menunjukkan peleburan di [[Anatolia]] atau [[Kaukasus]]).<ref>{{Cite journal|doi=10.1080/00438243.1989.9980081|last=Photos|first = E.|title=The Question of Meteoritic versus Smelted Nickel-Rich Iron: Archaeological Evidence and Experimental Results|journal=World Archaeology |volume=20 |issue=3 |date=1989 |pages=403–421|publisher=Taylor & Francis, Ltd.|jstor = 124562}}</ref><ref>{{Cite book|last = Muhly|first = James D.|chapter = Metalworking/Mining in the Levant|pages = 174–183|title =Near Eastern Archaeology IN: Eisenbrauns|editor = Lake, Richard Winona|date = 2003|volume = 180}}</ref>
Baris 201 ⟶ 266:
[[Tanur tinggi]] abad pertengahan mempunyai tinggi sekitar {{Convert|10|ft|m}} dan terbuat dari bata tahan api; udara tekan diperoleh dari penghembus yang digerakkan oleh tangan.<ref name="Biddle" /> Tanur tinggi modern jauh lebih besar.
[[Berkas:Philipp Jakob Loutherbourg d. J. 002.jpg|
Pada tahun 1709, [[Abraham Darby I]] membentuk tanur tinggi batu bara untuk memproduksi besi tuang. Ketersediaan besi murah adalah salah satu faktor yang menyebabkan Revolusi Industri. Menjelang akhir abad ke-18, besi tuang mulai menggantikan besi tempa untuk tujuan tertentu, karena harganya yang lebih murah. Kandungan karbon dalam besi tidak dilihat sebagai alasan untuk membedakan sifat besi tempa, besi tuang, dan baja hingga abad ke-18.{{sfn|Weeks|1968|p=32}}
Karena besi menjadi lebih murah dan lebih banyak, besi juga menjadi bahan struktural utama menyusul pembangunan inovatif [[The Iron Bridge|jembatan besi pertama]] pada tahun 1778.
===Tabel kualitas komparatif besi tuang===
[[Besi tuang]] atau besi cor ([[bahasa Inggris]]: ''cast iron'') adalah [[Logam paduan|paduan]] [[besi]]-[[karbon]] dengan kandungan karbon lebih dari 2%.<ref>{{cite book|last1=Campbell|first1=F.C.|title=Elements of Metallurgy and Engineering Alloys|url=https://archive.org/details/elementsmetallur00fcam|date=2008|publisher=ASM International|location=Materials Park, Ohio|isbn=978-0-87170-867-0|page=[https://archive.org/details/elementsmetallur00fcam/page/n453 453]}}</ref> Paduan besi dengan kandungan karbon kurang dari 2% disebut sebagai [[baja]]. Unsur paduan utama yang membentuk karakter besi tuang adalah karbon (C) antara 3-3,5% dan [[silikon]] (Si) antara 1,8-2,4%. Perbedaan kadar C dan Si menyebabkan [[titik lebur]] besi tuang lebih rendah dari baja, yakni sekitar 1.150 sampai 1.200 °C. Unsur paduan yang terkandung didalamnya mempengaruhi warna patahannya; besi tuang putih mengandung unsur karbida sedangkan besi tuang kelabu mengandung serpihan grafit.
{|class="wikitable"
|+Kualitas komparatif besi tuang<ref>Lyons, William C. and Plisga, Gary J. (eds.) ''Standard Handbook of Petroleum & Natural Gas Engineering'', Elsevier, 2006</ref>
|-
!Nama
!Komposisi nominal [% berat]
!Bentuk dan kondisi
!Kekuatan hasil <nowiki>[</nowiki>[[pounds per square inch|ksi]] (0.2% offset)]
!Kekuatan tarik [ksi]
!Perpanjangan [%]
!Kekerasan <nowiki>[</nowiki>[[Brinell scale]]<nowiki>]</nowiki>
!Penggunaan
|-
!Besi cor kelabu ([[ASTM International|ASTM]] A48)
|C 3.4, Si 1.8, [[manganese|Mn]] 0.5
|Cast
|—
|50
|0.5
|260
|Blok silinder mesin, roda gila, kotak roda gigi, alas alat mesin
|-
!Besi cor putih
|C 3.4, Si 0.7, Mn 0.6
|Cast (as cast)
|—
|25
|0
|450
|Permukaan bantalan bearing
|-
!Besi lunak (ASTM A47)
|C 2.5, Si 1.0, Mn 0.55
|Cast (annealed)
|33
|52
|12
|130
|Bantalan bearing gandar, roda track, poros engkol otomotif
|-
!Besi ulet atau nodular
|C 3.4, P 0.1, Mn 0.4, [[nickel|Ni]] 1.0, Mg 0.06
|Cast
|53
|70
|18
|170
|Roda gigi, poros bubungan, poros engkol
|-
!Besi ulet atau nodular (ASTM A339)
|—
|Cast (quench tempered)
|108
|135
|5
|310
|—
|-
!Ni-keras tipe 2
|C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0
|Sand-cast
|—
|55
|—
|550
|Aplikasi kekuatan tinggi
|-
!Ni-resist tipe 2
|C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5
|Cast
|—
|27
|2
|140
|Ketahanan terhadap panas dan korosi
|}
=== Baja ===
{{See also|Pembuatan baja}}
Baja (dengan kandungan karbon yang lebih kecil daripada besi kasar tetapi lebih banyak daripada besi tempa) pertama kali diproduksi menggunakan [[bloomery]]. Pandai besi di [[Luristan]], Iran bagian barat membuat baja yang bagus pada 1.000 SM.{{sfn|Weeks|1968|p=32}} Kemudian, versi pengembagannya adalah, [[baja Wootz]] oleh India dan [[baja Damaskus]] dikembangkan sekitar 300 SM dan 500 setelah masehi. Metode ini adalah spesialisasi, dan oleh karenanya baja tiak menjadi komoditas utama hingga tahun 1850an.<ref>Spoerl, Joseph S. [http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm A Brief History of Iron and Steel Production] {{Webarchive|url=https://web.archive.org/web/20100602031459/http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm |date=2010-06-02 }}. Saint Anselm College</ref>
Metode produksi baru adalah melalui [[karburasi]] besi batangan dalam [[proses sementasi]] ditemukan pada abad ke-17. Pada Revolusi Industri, metode baru memproduksi besi batangan tanpa batu bara ditemukan dan hal ini kemudian digunakan untuk memproduksi baja. Pada akhir 1850an, [[Henry Bessemer]] menciptakan proses pembuatan baja baru, melibatkan penghembusan udara melalui lelehan besi kasar untuk memproduksi baja lunak. Hal ini membuat baja jauh lebih ekonomis, oleh karena itu besi tempa tidak lagi diproduksi.<ref>{{cite book|url = https://books.google.com/books?id=fUmTX8yKU4gC&pg=PA190|pages = 190–191|title = Encyclopedia of the Elements: Technical Data - History - Processing - Applications|isbn = 9783527612345|author1 = Enghag|first1 = Per|date = 8 January 2008}}</ref>
====
Baja tahan karat adalah istilah yang umum untuk semua jenis baja yang merupakan produk dari proses peleburan khusus, memiliki tingkat kemurnian yang tinggi, dan bereaksi merata terhadap panas yang diberikan. Berdasarkan definisi ini, baja stainless tidak harus selalu merupakan baja alloy atau baja alloy tinggi. Dalam uraian ini akan dibatasi pada baja stainless alloy tinggi dengan kandungan kromium setidaknya 10,5%. Berdasarkan strukturnya, baja stainless alloy tinggi dapat dikelompokkan ke dalam kategori berikut:
* baja tahan karat feritik
* baja tahan karat martensitik
* baja tahan karat austenitik
* baja tahan karat feritik-austenitik (baja dupleks)
* Baja tahan karat feritik
;Baja tahan karat feritik dibagi menjadi dua kelompok:
* dengan kromium (CR) sekitar 11 hingga 13%
* dengan kromium (CR) sekitar 17%
Baja tahan karat dengan kandungan kromium sebesar 10,5% hingga 13% dikategorikan sebagai lembam korosi karena kandungan kromiumnya yang rendah. Baja ini digunakan jika kriteria yang diutamakan adalah masa pakai, keamanan, dan tingkat perawatan yang rendah dan tidak ada kriteria spesifik yang dibutuhkan. Bidang aplikasi yang umum menggunakannya misalnya konstruksi kontainer, konstruksi gerbong, dan konstruksi kendaraan.
;Baja tahan karat martensitik
Baja tahan karat martensitik dengan kandungan kromium 12 hingga 18% dan kandungan karbon melebihi 0,1% akan berubah menjadi austenitik pada temperatur di atas 950 - 1050°C. Pendinginan cepat (quenching) akan menghasilkan struktur martensitik. Struktur ini, terutama jika dikeraskan dan didinginkan, akan menghasilkan kekuatan yang tinggi dan bahkan meningkatkan kandungan karbon. Baja tahan karat martensitik digunakan misalnya untuk produksi pisau silet, pisau, atau gunting.
;Baja tahan karat austenitik
Baja tahan karat austenitik (disebut juga: baja kromium-nikel) dengan kandungan nikel di atas 8% merupakan kombinasi yang ideal untuk aplikasi praktis yang terkait pemrosesan, ketahanan terhadap korosi, dan karakteristik mekanisnya. Karakteristik utama dari jenis baja stainless ini adalah ketahanan yang tinggi terhadap korosi. Atas dasar itu, baja stainless austenitik diterapkan di area dengan media yang agresif, misalnya kontak dengan air laut yang mengandung klorida dan dalam industri kimia dan makanan.
;Baja tahan karat feritik-austenitik
Baja tahan karat feritik-austenitik seringkali disebut juga baja dupleks karena merupakan komposit yang terbentuk dari dua struktur ini. Karena baja ini memiliki tingkat fleksibilitas yang tinggi dan juga memiliki ketahanan yang lebih baik terhadap korosi, baja jenis ini terutama cocok untuk penggunaan pada teknik lepas pantai.
==== SAE steel grades ====
Sistem nilai baja steel grades SAE adalah sistem penomoran paduan standar (SAE J1086 - Numbering Metals and Alloys) untuk nilai baja yang dikelola oleh SAE International.
{| class="wikitable"
|+ Penamaan baja tahan karat {{sfn|Oberg|2004|pp=448–49}}
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Austenitik
|-
| 201 || S20100 || 16–18 || 3.5–5.5 || 0.15 || 5.5–7.5 || 0.75 || 0.06 || 0.03 || 0.25 || -
|-
| 202 || S20200 || 17–19 || 4–6 || 0.15 || 7.5–10.0 || 0.75 || 0.06 || 0.03 || 0.25 || -
|-
| 205 || S20500 || 16.5–18 || 1–1.75 || 0.12–0.25 || 14–15.5 || 0.75 || 0.06 || 0.03 || 0.32–0.40 || -
|-
| 254<ref name="ni">{{cite web |url=http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |title=What is Stainless Steel? |publisher=Nickel Institute |access-date=2007-08-13 |url-status=dead |archive-url=https://web.archive.org/web/20051231194101/http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |archive-date=2005-12-31 }}</ref> || S31254 || 20 || 18 || 0.02 max. || - || - || - || - || 0.20 || 6 Mo; 0.75 Cu; "Super austenitic"; All values nominal
|-
| 301 || S30100 || 16–18 || 6–8 || 0.15 || 2 || 0.75 || 0.045 || 0.03 || - || -
|-
| 302 || S30200 || 17–19 || 8–10 || 0.15 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || -
|-
| 302B || S30215 || 17–19 || 8–10 || 0.15 || 2 || 2.0–3.0 || 0.045 || 0.03 || - || -
|-
| 303 || S30300 || 17–19 || 8–10 || 0.15 || 2 || 1 || 0.2 || 0.15 min. || - || Mo 0.60 (optional)
|-
| 303Se || S30323 || 17–19 || 8–10 || 0.15 || 2 || 1 || 0.2 || 0.06 || - || 0.15 Se min.
|-
| 304 || S30400 || 18–20 || 8–10.50 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || -
|-
| 304L || S30403 || 18–20 || 8–12 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || -
|-
| 304Cu || S30430 || 17–19 || 8–10 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || - || 3–4 Cu
|-
| 304N || S30451 || 18–20 || 8–10.50 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10–0.16 || -
|-
| 305 || S30500 || 17–19 || 10.50–13 || 0.12 || 2 || 0.75 || 0.045 || 0.03 || - || -
|-
| 308 || S30800 || 19–21 || 10–12 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || -
|-
| 309 || S30900 || 22–24 || 12–15 || 0.2 || 2 || 1 || 0.045 || 0.03 || - || -
|-
| 309S || S30908 || 22–24 || 12–15 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || -
|-
| [[SAE 310S stainless steel|310]] || S31000 || 24–26 || 19–22 || 0.25 || 2 || 1.5 || 0.045 || 0.03 || - || -
|-
| [[SAE 310S stainless steel|310S]] || S31008 || 24–26 || 19–22 || 0.08 || 2 || 1.5 || 0.045 || 0.03 || - || -
|-
| 314 || S31400 || 23–26 || 19–22 || 0.25 || 2 || 1.5–3.0 || 0.045 || 0.03 || - || -
|-
| 316 || S31600 || 16–18 || 10–14 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 || 2.0–3.0 Mo
|-
| 316L || S31603 || 16–18 || 10–14 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.10 || 2.0–3.0 Mo
|-
| 316F || S31620 || 16–18 || 10–14 || 0.08 || 2 || 1 || 0.2 || 0.10 min. || - || 1.75–2.50 Mo
|-
| 316N || S31651 || 16–18 || 10–14 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10–0.16 || 2.0–3.0 Mo
|-
| 317 || S31700 || 18–20 || 11–15 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || 3.0–4.0 Mo
|-
| 317L || S31703 || 18–20 || 11–15 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || 3.0–4.0 Mo
|-
| 321 || S32100 || 17–19 || 9–12 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || Ti 5(C+N) min., 0.70 max.
|-
| 329 || S32900 || 23–28 || 2.5–5 || 0.08 || 2 || 0.75 || 0.04 || 0.03 || - || 1–2 Mo
|-
| 330 || N08330 || 17–20 || 34–37 || 0.08 || 2 || 0.75–1.50 || 0.04 || 0.03 || - || -
|-
| 347 || S34700 || 17–19 || 9–13 || 0.08 || 2 || 0.75 || 0.045 || 0.030 || - || Nb + Ta, 10 × C min., 1 max.
|-
| 348 || S34800 || 17–19 || 9–13 || 0.08 || 2 || 0.75 || 0.045 || 0.030 || - || Nb + Ta, 10 × C min., 1 max., but 0.10 Ta max.; 0.20 Ca
|-
| 384 || S38400 || 15–17 || 17–19 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || -
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Feritik
|-
| 405 || S40500 || 11.5–14.5 || - || 0.08 || 1 || 1 || 0.04 || 0.03 || - || 0.1–0.3 Al, 0.60 max.
|-
| 409 || S40900 || 10.5–11.75 || 0.05 || 0.08 || 1 || 1 || 0.045 || 0.03 || - || Ti 6 × (C + N) <ref>{{cite book|title=ASTM A SA-240/SA-540M|chapter=section 2, part A:Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications|year=2007|page=385}}</ref>
|-
| 429 || S42900 || 14–16 || 0.75 || 0.12 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 430 || S43000 || 16–18 || 0.75 || 0.12 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 430F || S43020 || 16–18 || - || 0.12 || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.60 Mo (optional)
|-
| 430FSe || S43023 || 16–18 || - || 0.12 || 1.25 || 1 || 0.06 || 0.06 || - || 0.15 Se min.
|-
| 434 || S43400 || 16–18 || - || 0.12 || 1 || 1 || 0.04 || 0.03 || - || 0.75–1.25 Mo
|-
| 436 || S43600 || 16–18 || - || 0.12 || 1 || 1 || 0.04 || 0.03 || - || 0.75–1.25 Mo; Nb+Ta 5 × C min., 0.70 max.
|-
| 442 || S44200 || 18–23 || - || 0.2 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 446 || S44600 || 23–27 || 0.25 || 0.2 || 1.5 || 1 || 0.04 || 0.03 || - || -
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Martensitik
|-
| 403 || S40300 || 11.5–13.0 || 0.60 || 0.15 || 1 || 0.5 || 0.04 || 0.03 || - || -
|-
| 410 || S41000 || 11.5–13.5 || 0.75 || 0.15 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 414 || S41400 || 11.5–13.5 || 1.25–2.50 || 0.15 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 416 || S41600 || 12–14 || - || 0.15 || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.060 Mo (optional)
|-
| 416Se || S41623 || 12–14 || - || 0.15 || 1.25 || 1 || 0.06 || 0.06 || - || 0.15 Se min.
|-
| 420 || S42000 || 12–14 || - || 0.15 min. || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 420F || S42020 || 12–14 || - || 0.15 min. || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.60 Mo max. (optional)
|-
| 422 || S42200 || 11.0–12.5 || 0.50–1.0 || 0.20–0.25 || 0.5–1.0 || 0.5 || 0.025 || 0.025 || - || 0.90–1.25 Mo; 0.20–0.30 V; 0.90–1.25 W
|-
| 431 || S41623 || 15–17 || 1.25–2.50 || 0.2 || 1 || 1 || 0.04 || 0.03 || - || -
|-
| 440A || S44002 || 16–18 || - || 0.60–0.75 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo
|-
| 440B || S44003 || 16–18 || - || 0.75–0.95 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo
|-
| [[440C]] || S44004 || 16–18 || - || 0.95–1.20 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo
|-
! colspan=2 | Penamaan
! colspan=9 | Komposisi menurut berat (%)
|-
! SAE
! UNS
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]]
! Lainnya
|-
! colspan="11" | Tahan panas
|-
| 501 || S50100 || 4–6 || - || 0.10 min. || 1 || 1 || 0.04 || 0.03 || - || 0.40–0.65 Mo
|-
| 502 || S50200 || 4–6 || - || 0.1 || 1 || 1 || 0.04 || 0.03 || - || 0.40–0.65 Mo
|-
! colspan="11"|Pengerasan presipitasi martensit
|-
| 630 || S17400 || 15–17 || 3–5 || 0.07 || 1 || 1 || 0.04 || 0.03 || - || Cu 3–5, Ta 0.15–0.45 <ref>{{cite web |url=http://www.upmet.com/media/17-4.pdf |title=Precipitation-Hardening Stainless Steel Type 17-4PH (S17400)}}</ref>
|}
=== Dasar kimia modern ===
Pada tahun 1774, [[Antoine Lavoisier]] mereaksikan uap air dengan besi logam di dalam tabung besi pijar untuk menghasilkan [[hidrogen]] dalam percobaan yang mengarah ke demonstrasi [[Hukum kekekalan massa|konservasi massa]], yang mengubah instrumentasi kimia dari ilmu kualitatif menjadi kuantitatif. Oksidasi anaerobik besi pada temperatur tinggi secara skematis dapat ditunjukkan oleh reaksi berikut:
:<chem>Fe + H2O -> FeO + H2</chem>
:<chem>2Fe + 3H2O -> Fe2O3 + 3H2</chem>
:<chem>3Fe + 4H2O -> Fe3O4 + 4H2</chem>
<!--
===Recent discoveries===
Baris 234 ⟶ 557:
{{See also|Bijih besi}}
Produksi besi atau baja adalah suatu proses dengan dua tahapan utama, kecuali produk yang diinginkan adalah besi tuang. Tahap pertama adalah produksi besi kasar (''pig iron'') dalam tanur tinggi. Cara lain, reduksi langsung. Tahap kedua, besi kasar diubah menjadi besi tempa atau baja.<!--https://books.google.com/books?id=xkVPNtRagDkC-->
[[Berkas:Chinese Fining and Blast Furnace.jpg|
Untuk beberapa fungsi terbatas seperti inti elektromagnet, besi murni diproduksi dengan cara elektrolisis larutan [[fero sulfat]].
Bijih besi terdiri atas [[oksigen]] dan [[atom]] [[besi]] yang berikatan bersama dalam [[molekul]]. Besi sendiri biasanya didapatkan dalam bentuk [[magnetit]] (Fe<sub>3</sub>O<sub>4</sub>), [[hematit]] (Fe<sub>2</sub>O<sub>3</sub>), [[goethit]], [[limonit]] atau [[siderit]]. Bijih besi biasanya kaya akan [[besi oksida]] dan beragam dalam hal [[warna]], dari kelabu tua, kuning muda, ungu tua, hingga merah karat. Saat ini, cadangan biji besi tampak banyak, namun seiring dengan bertambahnya penggunaan besi secara eksponensial berkelanjutan, cadangan ini mulai berkurang, karena jumlahnya tetap. Sebagai contoh, [[Lester Brown]] dari [[Worldwatch Institute]] telah memperkirakan bahwa bijih besi bisa habis dalam waktu 64 tahun berdasarkan pada ekstrapolasi konservatif dari 2% pertumbuhan per tahun.<ref>{{cite web |url=http://www.mii.org/Minerals/photoiron.html |title=Iron Ore – Hematite, Magnetite & Taconite |work=Mineral Information Institute |access-date=7 April 2006 |url-status=dead |archive-url=https://web.archive.org/web/20060417160321/http://www.mii.org/Minerals/photoiron.html |archive-date=17 April 2006 }}</ref><ref>{{Cite journal|last1=Goldstein|first1=J.I.|last2=Scott|first2=E.R.D.|last3=Chabot|first3=N.L.|date=2009|title=Iron meteorites: Crystallization, thermal history, parent bodies, and origin|journal=Geochemistry|language=en|volume=69|issue=4|pages=293–325|doi=10.1016/j.chemer.2009.01.002|bibcode=2009ChEG...69..293G}}</ref>
;Tabel kandungan mineral besi
{| class=wikitable
!Mineral !! Rumus kimia !! Kandungan besi teoritis dalam mineral (dalam%)!! Kandungan besi teoritis setelah kalsinasi (dalam%)
|-
| [[Hematit]] || {{Chem|Fe|2|O|3}} || align="center" | 69,96 || align="center" | 69,96
|-
| [[Magnetit]] || {{Chem|Fe|3|O|4}} || align="center" | 72,4 || align="center" | 72,4
|-
| [[Magnesioferrite]] || {{Chem|MgOFe|2|O|3}} || align="center" | 56-65 || align="center" | 56-65
|-
| [[Goetit]] || {{Chem|Fe|2|O|3|H|2|O}} || align="center" | 62,9 || align="center" | 70
|-
| [[Hydrogœthite]] || {{Chem|3Fe|2|O|3|4H|2|O}} || align="center" | 60,9 || align="center" | 70
|-
| [[Limonit]] || {{Chem|2Fe|2|O|3|3H|2|O}} || align="center" | 60 || align="center" | 70
|-
| [[Siderite]] || {{Chem|FeCO|3}} || align="center" | 48,3 || align="center" | 70
|-
| [[Pirit]] || {{Chem|FeS|2}} || align="center" | 46,6 || align="center" | 70
|-
| [[Pyrrhotite]] || {{Chem|Fe|1-x|S}} || align="center" | 61,5 || align="center" | 70
|-
| [[Ilmenit]] || {{Chem|FeTiO|3}} || align="center" | 36,8 || align="center" | 36,8
|}
==== Proses tanur tinggi ====
Baris 243 ⟶ 594:
Di dalam tanur, kokas bereaksi dengan oksigen dalam ledakan udara menghasilkan [[karbon monoksida]]:
:
Karbon monoksida yang mereduksi bijih besi (sesuai [[persamaan reaksi]] di bawah, hematite) menjadi lelehan besi, berubah menjadi [[karbon dioksida]] sesuai proses:
:<chem>Fe2O3 + 3CO -> 2Fe + 3CO2</chem>
Beberapa besi dalam temperatur tinggi di bagian-bagian tanur yang lebih ''dingin'' bereaksi langsung dengan kokas:
:<chem>2Fe2O3 + 3C -> 4Fe + 3CO2</chem>
Fluks yang berguna untuk melelehkan ketakmurnian dalam bijih biasanya adalah [[Batugamping|batu gamping]] ({{Lang-en|limestone}}) ([[kalsium karbonat]]) dan [[dolomit]] (kalsium-magnesium karbonat). Fluks khusus lainnya digunakan bergantung pada karakteristik bijih. Panas di dalam tungku mengakibatkan fluks batu gamping terdekomposisi menjadi [[kalsium oksida]] (dikenal juga sebagai tawas):
:<chem>CaCO3 -> CaO + CO2</chem>
Kemudian kalsium oksida bereaksi dengan silikon dioksida membentuk [[Slag (cairan)|''slag'']].
:<chem>CaO +
Slag meleleh karena panas tanur. Pada dasar tanur, lelehan slag mengapung di atas lelehan besi yang lebih padat, dan tingkap di bagian samping tanur dibuka untuk mengalirkan dan memisahkan besi dengan slag. Besi, ketika telah dingin, disebut besi kasar (''pig iron''), sementara slag dapat digunakan sebagai bahan konstruksi [[Jalan raya|jalan]] atau bahan pengaya tanah yang miskin mineral untuk [[pertanian]].<ref name="Biddle" />
[[Berkas:LightningVolt Iron Ore Pellets.jpg|
==== Reduksi besi langsung ====
Karena masalah lingkungan, telah dikembangkan metode alternatif pengolahan besi. "Reduksi besi langsung" mereduksi bijih besi menjadi serbuk yang dinamakan besi "karang" atau besi "langsung" yang cocok untuk pembuatan baja.<ref name="Biddle" /> Dua reaksi utama pada proses reduksi langsung:
* Gas alam dioksidasi sebagian (dengan panas dan katalis):
:<chem>2CH4 + O2 -> 2CO + 4H2</chem>
* Gas-gas ini kemudian diberi perlakuan dengan bijih besi dalam tanur, menghasilkan besi karang padat:
:<chem>Fe2O3 + CO + 2H2 -> 2Fe + CO2 + 2H2O</chem>
[[Silika]] dihilangkan dengan penambahan fluks [[Batugamping|gamping]] seperti telah dijelaskan di atas.
=== Metode laboratorium ===
[[Berkas:
Besi logam secara umum diproduksi di laboratorium melalui dua metode. Pertama adalah elektrolisis fero klorida pada katode besi. Metode kedua melibatkan reduksi besi oksida dengan gas hidrogen pada temperatur sekitar 500 °C.<ref>H. Lux "Metallic Iron" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 2. p. 1490-1..</ref>
== Aplikasi ==
[[Berkas:Iron powder.JPG|
=== Metalurgi ===
{|class="wikitable" style="float:left; clear:left; margin-right:1em; margin-top:0;"
|+Produksi besi 2009 (juta [[ton]])<ref>[http://www.worldsteel.org/statistics/statistics-archive/yearbook-archive.html Steel Statistical Yearbook 2010] {{Webarchive|url=https://web.archive.org/web/20120701061319/http://worldsteel.org/statistics/statistics-archive/yearbook-archive.html |date=2012-07-01 }}. World Steel Association</ref>
!Negara!![[Bijih besi]]!![[Besi kasar]]!![[Besi reduksi langsung|Besi reduksi]]!![[Baja]]
|-
|
|-
|Australia||393,9|| 4.4|| ||5.2
Baris 316 ⟶ 669:
Baja ringan lebih mudah berkarat daripada besi tempa, tetapi lebih murah dan lebih banyak tersedia. [[Baja karbon]] mengandung 2,0% karbon atau kurang,<ref name="kts">{{cite web|title = Classification of Carbon and Low-Alloy Steels|url = http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=62|accessdate = 5 January 2008}}</ref> ditambah sedikit [[manganese|mangan]], [[belerang]], [[Fosforus|fosfor]], dan [[silikon]]. [[Baja paduan]] mengandung bervariasi jumlah karbon dan logam lain, seperti [[kromium]], [[vanadium]], [[molibdenum]], [[nikel]], [[wolfram]], dan sebagainya. Kandungan paduannya mendongkrak biaya, sehingga biasanya hanya digunakan untuk keperluan khusus. Satu baja paduan umum, adalah [[baja nirkarat]]. Recent Perkembangan terkini dalam metalurgi besi telah menghasilkan berbagai baja paduan mikro, yang disebut juga baja '[[Baja HSLA|HSLA]]' (singkatan dari {{Lang-en|'''H'''igh '''S'''trength '''L'''ow '''A'''lloy}}), mengandung sedikit tambahan untuk menghasilkan kekuatan tinggi dan biasanya ketangguhan spektakuler dengan biaya minimal.
[[Berkas:Ironattenuation.PNG|
Terlepas dari aplikasi tradisional, besi juga digunakan untuk perlindungan dari radiasi pengion. Meskipun lebih ringan daripada bahan perlindungan tradisional lainnya, yaitu timbal, ini jauh lebih kuat secara mekanis. Atenuasi radiasi sebagai fungsi energi ditunjukkan dalam grafik.
Kerugian utama besi dan baja adalah bahwa besi murni, dan sebagian besar paduannya, dapat membentuk [[karat]] jika tidak dilindungi. [[Cat|Pengecatan]], [[galvanisasi]], [[pasivasi (kimia)|pasivasi]], pelapisan plastik dan [[Pembiruan (baja)|pembiruan]] semua digunakan untuk melindungi besi dari karat dengan menghalangi masuknya [[air]] dan oksigen atau dengan [[proteksi katodik]].
=== Senyawa besi ===
Meskipun peran metalurgi dominan dalam hal jumlah, senyawa besi banyak digunakan oleh baik industri maupun kegunaan lainnya. Katalis besi secara tradisional digunakan dalam [[proses Haber-Bosch]] untuk produksi amonia dan [[proses Fischer-Tropsch]] untuk konversi karbon monoksida menjadi [[hidrokarbon]] untuk bahan bakar dan pelumas.<ref>{{Cite book|title = Surface science: foundations of catalysis and nanoscience|first = Kurt W.|last = Kolasinski|isbn = 978-0-471-49244-3|publisher =John Wiley and Sons|date = 2002|url = https://books.google.com/?id=OA7L1l6oHAYC&pg=PR15|chapter = Where are Heterogenous Reactions Important|pages = 15–16}}</ref> Serbuk besi dalam pelarut asam digunakan dalam [[reduksi Bechamp]] yaitu reduksi [[nitrobenzena]] menjadi [[anilin]].<ref>{{Cite book|url = https://books.google.com/?id=BiywGdlot9kC&pg=PA167|chapter = Nitrobenzene and Nitrotoluene|isbn = 978-0-8247-2481-8|publisher = CRC Press|date = 1989|first = John J.|last = McKetta|title = Encyclopedia of Chemical Processing and Design: Volume 31 – Natural Gas Liquids and Natural Gasoline to Offshore Process Piping: High Performance Alloys|pages = 166–167}}</ref>
[[Besi(III) klorida]] digunakan untuk pemurnian air dan [[pengolahan limbah]], untuk mewarnai tekstil, sebagai pewarna cat, sebagai aditif pakan ternak, dan sebagai [[
[[Besi(II) sulfat]] digunakan sebagai prekursor untuk senyawa besi lainnya. Ini juga digunakan untuk [[redoks|mereduksi]] kromat dalam semen. Ini digunakan untuk memfortifikasi makanan dan mengobati [[anemia defisiensi besi]]. Hal di atas adalah kegunaan utamanya. [[Besi(III) sulfat]] digunakan dalam pengendapan partikel limbah dalam air tangki. [[Besi(II) klorida]] digunakan sebagai pereduksi flokulator, dalam pembentukan kompleks besi dan besi oksida magnetik, serta sebagai reduktor dalam sintesis organik.
Baris 339 ⟶ 692:
# '''''Sacrificial Protection''''' (pengorbanan anode). Magnesium adalah logam yang jauh lebih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi, maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti.
== Peran
Besi melimpah dalam biologi.<ref>{{cite book|
{{cite book
|first1=Gereon M.
Baris 356 ⟶ 709:
|doi=10.1007/978-3-319-12415-5_5
}}
</ref> Besi-protein ditemukan dalam semua organisme mulai dari yang promotif [[archaea]] hingga manusia. Warna darah disebabkan oleh hemoglobin, suatu protein yang mengandung besi. Seperti dalam hemoglobin, besi
[[Berkas:Heme b.png|
Besi adalah [[unsur renik]] penting yang ditemukan di hampir semua organisme hidup.<!--Probably incorrect: The only exceptions are several organisms that live in iron-poor environments and have evolved to use different elements in their metabolic processes, such as manganese instead of iron for catalysis, or [[hemocyanin]] instead of hemoglobin.{{Citation needed|date=September 2010}} 2010}}--> Enzim dan protein mengandung besi,
=== Senyawa bioanorganik ===
Baris 368 ⟶ 721:
=== Kesehatan dan diet ===
{{Utama|Defisiensi besi|Metabolisme besi}}
Besi memang melimpah, tetapi sumber zat besi utama antara lain [[daging merah]], [[kacang-kacangan]], [[kacang]], [[daging unggas]], [[ikan]], [[sayuran hijau]], [[selada air]], [[tahu]], [[buncis]], [[kacang polong]], [[roti]] yang difortifikasi, dan [[sereal]] yang difortifikasi. Besi dalam jumlah kecil ditemukan dalam [[molases]],
Besi yang ada dalam [[suplemen makanan]]
=== Penyerapan dan penyimpanan ===
Akuisisi besi menghadapi masalah bagi organisme aerobik, karena ion feri sukar larut pada pH mendekati netral. Oleh karena itu, bakteri telah melibatkan senyawa [[wikt:sequester|sekuestor]] yang disebut [[siderofora]] ({{lang-en|siderophore}}).<ref>{{Cite journal| url = http://www.jbc.org/content/270/45/26723.short|pmid = 7592901|doi = 10.1074/jbc.270.45.26723|date = 1995|last1 = Neilands|first1 = JB|title = Siderophores: structure and function of microbial iron transport compounds|volume = 270|issue = 45|pages = 26723–6|journal = The Journal of Biological Chemistry}}</ref><ref>{{Cite journal| doi =10.1146/annurev.bi.50.070181.003435|title =Microbial Iron Compounds|date =1981|last1 =Neilands|first1 =J B|journal =Annual Review of Biochemistry|volume =50|pages =715–31|pmid =6455965|issue=1}}</ref><ref>{{Cite journal| doi = 10.1023/A:1020218608266|date = 2002|last1 = Boukhalfa|first1 = Hakim|last2 = Crumbliss|first2 = Alvin L.|journal = BioMetals|volume = 15|pages = 325–39|pmid = 12405526|title = Chemical aspects of siderophore mediated iron transport|issue = 4}}</ref>
Setelah diserap, dalam [[sel (biologi)|sel]], penyimpanan besi diatur dengan hati-hati; ion besi "bebas" tidak tersedia begitu saja. Komponen utama yang mengatur ini adalah protein [[transferin]], yang mengikat ion besi yang diserap dari [[duodenum]] dan mengangkutnya melalui [[aliran arah]] menuju sel.<ref>{{Cite journal|doi=10.1371/journal.pbio.0000079|title=How Mammals Acquire and Distribute Iron Needed for Oxygen-Based Metabolism|date=2003|last=Rouault|first = Tracey A.|journal=PLoS Biology|volume=1|pages=e9 |pmid=14551907 |issue=3 |pmc=212690}}</ref> Pada hewan, tumbuhan, dan jamur, besi
Besi anorganik berkontribusi pada reaksi redoks dalam [[gugus besi-belerang]] enzim, seperti [[nitrogenase]] (terlibat dalam sintesis [[amonia]] dari [[nitrogen]] dan [[hidrogen]]) serta [[hidrogenase]]. Protein besi non-heme meliputi [[enzim]] [[metana monooksigenase]] (mengoksidasi [[metana]] menjadi [[metanol]]), [[ribonukleotida reduktase]] (mereduksi [[ribosa]] menjadi [[deoksiribosa]]; [[Replikasi DNA|biosintesis DNA]]), [[hemertrin]] (transpor [[oksigen]] dan fiksasi dalam [[invertebrata]] laut) serta [[asam fosfatase]] ungu ([[hidrolisis]] [[ester]] [[fosfat]]).
Baris 386 ⟶ 739:
[[Metabolisme besi dalam tubuh manusia|Asupan besi]] diatur ketat oleh tubuh manusia, yang tidak memiliki pengaturan fisiologis ekskresi besi. Hanya sejumlah kecil besi yang hilang setiap hari karena peluruhan sel mukosa dan epitel kulit, sehingga pengendalian level besi sangat diatur dari asupannya.<ref>{{cite book|author1=Ramzi S. Cotran|author2=Vinay Kumar|author3=Tucker Collins|author4=Stanley Leonard Robbins|title=Robbins pathologic basis of disease|url=https://books.google.com/books?id=kdhrAAAAMAAJ|accessdate= 27 June 2012|date=1999|publisher=Saunders|isbn=978-0-7216-7335-6}}</ref> Pengaturan asupan besi tidak berlangsung sempurna pada beberapa orang akibat dari [[Kelainan genetika|cacat genetik]] yang memetakan region gen HLA-H pada kromosom 6. Pada orang-orang ini, kelebihan asupan dapat mengakibatkan [[kelainan akibat kelebihan besi]] ({{lang-en|iron overload disorder}}), seperti [[hemokromatosis]]. Banyak orang memiliki kerentanan genetik terhadap kelebihan zat besi tanpa menyadarinya atau menyadari masalah sejarah keluarga. Berdasarkan alasan tersebut, disarankan untuk tidak mengkonsumsi suplemen besi kecuali mengalami [[defisiensi besi]] dan telah berkonsultasi dengan dokter. [[Hemokromatosis]] diperkirakan menyebabkan penyakit antara 0,3 dan 0,8% di kalangan ras kaukasia.<ref>{{Cite journal|title=Hereditary hemochromatosis|journal=Rev Med Interne|date=2000 |volume=21 |issue=11 |pages=961–71 |doi=10.1016/S0248-8663(00)00252-6 |pmid=11109593|last1=Durupt|first1=S|last2=Durieu|first2=I|last3=Nové-Josserand|first3=R|last4=Bencharif|first4=L|last5=Rousset|first5=H|last6=Vital Durand|first6=D}}</ref>
[[MRI]] menemukan bahwa besi terakumulasi dalam [[hipokampus]] otak pada penderita [[Alzheimer]] dan dalam [[substansia nigra]] pada penderita [[Parkinson]].<ref>{{Cite journal|
=== Bioremediasi ===
Baris 394 ⟶ 747:
|first = Greg
|title = The Rough Guide to the ''Titanic''
|url = https://archive.org/details/roughguidetotita0000ward
|date = 2012
|publisher = Rough Guides Ltd
|location = London
|page=[https://archive.org/details/roughguidetotita0000ward/page/171 171]
|isbn = 978-1-4053-8699-9
|ref = harv
}}</ref> Bakteti asidofil ''[[Acidithiobacillus|Acidithiobacillus ferrooxidans]]'', ''[[Leptospirillum ferrooxidans]]'', ''[[Sulfolobus]]'' spp., ''[[Acidianus|Acidianus brierleyi]]'' and ''[[Sulfobacillus thermosulfidooxidans]]'' dapat mengoksidasi enzimatis besi fero.<ref>{{cite journal|url=http://mic.sgmjournals.org/content/156/3/609.full|title=Metals, minerals and microbes: geomicrobiology and bioremediation|journal=Microbiology|author=Geoffrey Michael Gadd|volume=156|date=March 2010|pages=609–643|doi=10.1099/mic.0.037143-0|pmid=20019082|issue=3|access-date=2016-01-11|archive-date=2014-10-25|archive-url=https://web.archive.org/web/20141025153753/http://mic.sgmjournals.org/content/156/3/609.full|dead-url=yes}}</ref> Sample jamur ''[[Aspergillus niger]]'' ditemukan tumbuh dari larutan penambangan emas, dan ditemukan mengandung kompleks sianologam seperti emas, perak, tembaga, besi dan seng. Jamur juga berperan dalam kemudahlarutan sulfida logam berat.<ref>{{cite book|url=https://books.google.com/books?id=WY3YvfNoouMC&pg=PA533&cad=4#v=onepage&q&f=false|title=Mycoremediation: Fungal Bioremediation|author=Harbhajan Singh|page=509}}</ref>
=== Hambatan permeabel reaktif ===
Baris 409 ⟶ 763:
{{Utama|Keracunan besi}}
Mencerna besi dalam jumlah besar dapat menyebabkan kelebihan kadar besi dalam darah. Kadar besi fero yang tinggi dalam darah bereaksi dengan [[peroksida]] membentuk [[radikal bebas]], yang sangat reaktif dan dapat merusak [[DNA]], [[protein]], [[lemak]], dan komponen sel lainnya. Oleh karena itu, toksisitas besi muncul ketika besi bebas dalam sel, yang biasanya terjadi ketika kadar besi melebihi kemampuan [[transferin]] mengikat besi. Kerusakan pada sel [[Saluran pencernaan manusia|saluran pencernaan]] dapat juga menghambat pengaturan asupan besi yang berakibat pada peningkatan lebih lanjut kadar besi darah. Besi umumnya merusak sel dalam [[jantung]], [[liver]] dan lainnya, yang dapat menyebabkan efek parah, termasuk [[koma (medis)|koma]], [[asidosis metabolik]], [[Syok (sirkulatori)|syok]], [[Gagal liver|kegagalan liver]], [[koagulopati]], [[sindrom distres pernapasan dewasa]] ({{lang-en|adult respiratory distress syndrome}}), kerusakan organ jangka panjang, dan bahkan kematian.<ref name="Cheney" /> Manusia mengalami keracunan besi di atas 20 miligram besi per kilogram berat badan, dan 60 miligram per kilogram adalah [[dosis letal]].<ref name="emed-topic285">{{cite web|url=http://www.emedicine.com/emerg/topic285.htm|title=Toxicity, Iron| publisher = Medscape|accessdate=23 May 2010}}</ref> Asupan besi berlebihan,
Pengelolaan medis keracunan besi adalah rumit, dan dapat berupa penggunaan zat [[Pembentukan khelat|pengkhelat]] yang disebut [[deferoksamina]] untuk mengikat dan mengeluarkan kelebihan besi dari dalam tubuh.<ref name="Cheney">{{Cite journal| last1 =Cheney|first1 =K.| last2 =Gumbiner|first2 =C.| last3 = Benson|first3 =B.| last4 = Tenenbein|first4 =M.|title=Survival after a severe iron poisoning treated with intermittent infusions of deferoxamine |journal=J Toxicol Clin Toxicol |volume=33 |issue=1 |pages=61–6 |date=1995 |pmid=7837315 |doi=10.3109/15563659509020217}}</ref><ref>{{Cite journal| last = Tenenbein|first = M|title=Benefits of parenteral deferoxamine for acute iron poisoning |journal=J Toxicol Clin Toxicol |volume=34 |issue=5 |pages=485–489 |date=1996 |pmid=8800185 |doi=10.3109/15563659609028005}}</ref><ref name="pmid21102602">{{cite journal | author = Wu H, Wu T, Xu X, Wang J, Wang J. | title = Iron toxicity in mice with collagenase-induced intracerebral hemorrhage | journal = J Cereb Blood Flow Metab. | volume = 31 | issue = 5 | pages = 1243–50 |date=May 2011 | pmid = 21102602 | doi =10.1038/jcbfm.2010.209 | pmc=3099628}}</ref>
== Lihat
{{Portal|Kimia}}
<!-- Please keep this list tidy and in alphabetical order. Avoid links prominently featured in article. -->
Baris 432 ⟶ 786:
== Daftar pustaka ==
* {{Greenwood&Earnshaw2nd}}
* <!-- We -->{{Cite book
|last = Weeks
Baris 438 ⟶ 793:
|year = 1968
|title = Discovery of the Elements
|url = https://archive.org/details/discoveryofeleme07edunse
|publisher = Journal of Chemical Education
|location = Easton, PA
|chapter = Elements Known to the Ancients
|pages = [https://archive.org/details/discoveryofeleme07edunse/page/n42 29]–40
|lccn = 68-15217
|ref = CITEREFWeeks1968
Baris 447 ⟶ 803:
}}
== Bacaan
* {{cite|author=H.R. Schubert|title=History of the British Iron and Steel Industry... to 1775 AD|publisher=Routledge|location=London|year=1957}}.
* {{cite|author=R.F. Tylecote|title=History of Metallurgy|publisher=Institute of Materials|location=London|year=1992}}.
* {{cite|author=R.F. Tylecote|contribution=Iron in the Industrial Revolution|editor1=J. Day|editor2=R.F. Tylecote|title=The Industrial Revolution in Metals|publisher=Institute of Materials|year=1991|pages=200–60}}.
{{Wiktionary|iron}}
{{Commons|Iron}}
== Pranala luar ==
* [http://www.webelements.com/webelements/elements/text/Fe/index.html WebElements.com – Iron]
* [http://education.jlab.org/itselemental/ele026.html It's Elemental – Iron]
* [http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin2.html The Most Tightly Bound Nuclei]
* [http://www.webelements.com/webelements/elements/text/Fe/xtal.html Crystal structure of iron]
* [http://www.karyasteel.com Steel Plate Supplier Surabaya]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
* [http://www.rsc.org/chemistryworld/podcast/element.asp Chemistry in its element podcast] (MP3) from the [[Royal Society of Chemistry]]'s [[Chemistry World]]: [http://www.rsc.org/images/CIIE_iron_48kbps_tcm18-120046.mp3 Iron]
* [http://www.periodicvideos.com/videos/026.htm Iron] at ''[[The Periodic Table of Videos]]'' (University of Nottingham)
Baris 469 ⟶ 824:
{{Senyawa besi}}
[[Kategori:Besi| ]]
[[Kategori:Biologi dan farmakologi unsur kimia]]
[[Kategori:Unsur kimia]]
Baris 476 ⟶ 831:
[[Kategori:Mineral diet]]
[[Kategori:Bahan feromagnetik]]
[[Kategori:Unsur kimia dengan struktur kubus berpusat-badan]]
[[Kategori:Logam]]
|