Fungsi trigonometri: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) →Notasi: alihbahasa ulang, diambil dari [https://en.wiki-indonesia.club/w/index.php?title=Trigonometric_functions&oldid=1104626163] Tag: Suntingan visualeditor-wikitext |
Fitur saranan suntingan: 3 pranala ditambahkan. Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler Tugas pengguna baru Disarankan: tambahkan pranala |
||
(5 revisi perantara oleh 4 pengguna tidak ditampilkan) | |||
Baris 1:
{{Trigonometri}}
[[Berkas:
Dalam [[matematika]], '''fungsi trigonometri''' merupakan [[fungsi real]] yang mengaitkan sudut dari [[Segitiga siku|segitiga bersiku]] dengan perbandingan antara dua sisi segitiga. Fungsi ini memiliki penerapan yang sangat luas dalam bidang sains terkait dengan [[geometri]] (misalnya navigasi, [[geodesi]], [[mekanika benda langit]], [[mekanika zat padat]], dan cabang lainnya). Fungsi ini merupakan contoh [[fungsi periodik]] paling sederhana, dan juga memiliki penerapan yang sangat luas dalam mempelajari fenomena periodik melalui [[analisis Fourier]].
Fungsi trigonometri seperti '''[[Sinus (trigonometri)|sinus]]''', '''[[kosinus]]''', dan '''tangen''' merupakan fungsi yang paling sering dipakai dalam [[matematika modern]]; sedangkan fungsi [[Perkalian invers|inversnya]] seperti '''kosekan''', '''sekan''', dan '''kotangen''' jarang dipakai. Masing-masing keenam fungsi tersebut mempunyai [[fungsi invers]] yang
Definisi fungsi trigonometri terlama, yang berkaitan dengan segitiga bersudutkan siku-siku, hanya mendefinisikannya untuk [[sudut lancip]]. Secara geometris, fungsi sinus dan kosinus seringkali dapat diperluas menjadi fungsi yang mempunyai [[Domain fungsi|domain]] yang mengandung seluruh [[garis bilangan real]], maka domain fungsi lainnya adalah garis bilangan real dengan setiap titik terpencilnya hilang. Definisi modern yang mengekspresikan fungsi trigonometri sebagai [[deret takhingga]] atau sebagai penyelesai dari [[persamaan diferensial]], memungkinkan perluasan domain dari fungsi sinus dan kosinus menjadi domain yang mengandung seluruh [[bidang kompleks]], dan domain dari fungsi trigonometri lain menjadi domain mengandung bidang kompleks dengan setiap titik terpencilnya hilang.
Baris 17:
[[Berkas:TrigonometryTriangle.svg|jmpl|Dalam segitiga siku-siku {{Math|''BAC''}}, ketiga fungsi trigonometri dari sudut {{Math|''A''}} dinyatakan sebagai: {{math|1=sin ''A'' = {{sfrac|''a''|''c''}}}}, {{math|1=cos ''A'' = {{sfrac|''b''|''c''}}}}, dan {{math|1=tan ''A'' = {{sfrac|''a''|''b''}}}}.]]
[[Berkas:TrigFunctionDiagram.svg|jmpl|Plot dari enam fungsi trigonometri, lingkaran satuan, dan sebuah garis yang membentuk sudut dengan sumbu-{{mvar|x}} sebesar {{math|1=''θ'' = 0,7 rad}}.Pada plot tersebut, terdapat titik-titik yang dilabeli {{color|#D00|1}}, {{color|#02D|Sec(''θ'')}}, {{color|#0D1|Csc(''θ'')}} mewakili panjang ruas garis yang ditarik dari titik asal ke titik tersebut. Titik-titik seperti {{color|#D00|Sin(''θ'')}}, {{color|#02D|Tan(''θ'')}}, dan {{color|#0D1|1}} merupakan panjang garis yang ditarik dari sumbu-{{mvar|x}}, sedangkan titik seperti {{color|#D00|Cos(''θ'')}}, {{color|#02D|1}}, dan {{color|#0D1|Cot(''θ'')}} merupakan panjang di sekitar sumbu-{{mvar|x}} yang ditarik dari titik asal.]]
Jika sudut lancip dinyatakan sebagai {{mvar|θ}}, maka setiap sudut siku-siku yang mempunyai sudut {{mvar|θ}} dikatakan [[Kesebangunan (geometri)|sebangun]] terhadap satu sama lain; dalam artian, perbandingan dari setiap dua panjang sisinya hanya bergantung pada {{mvar|θ}}. Jadi, keenam perbandingan tersebut mendefinisikan enam fungsi trigonometri dari {{mvar|θ}}. Definisi berikut mengatakan bahwa [[hipotenusa]] (sisi miring) merupakan panjang dari sisi yang berhadapan dengan sudut siku-siku, sisi depan merupakan panjang sisi yang berhadap dari sudut {{mvar|θ}}, dan sisi samping merupakan panjang sisi yang berhadapan dengan sudut {{mvar|θ}} dan sudut siku-siku.<ref>{{harvtxt|Protter|Morrey|1970|pp=APP-2, APP-3}}</ref><ref>{{Cite web|title=Sine, Cosine, Tangent|url=https://www.mathsisfun.com/sine-cosine-tangent.html|website=www.mathsisfun.com|access-date=29 August 2020|archive-date=2023-06-30|archive-url=https://web.archive.org/web/20230630135422/https://www.mathsisfun.com/sine-cosine-tangent.html|dead-url=no}}</ref>
{|
| style="padding-left: 2em; padding-right: 2em; " |
Baris 41:
|}
Dalam segitiga siku-siku, jumlah dari dua sudut lancip sama dengan sudut siku-siku, yaitu {{math|90°}} atau {{math|{{sfrac|''π''|2}}}} [[radian]]. Karena itu, <math>\sin(\theta)</math> dan <math>\cos(90^\circ - \theta)</math> mewakili perbandingan yang sama sehingga menjadi sama. Identitas dan kaitan antara fungsi trigonometri lainnya yang sejalan diringkas dalam tabel berikut.
[[Berkas:
{| class="wikitable sortable"
|+Ringkasan mengenai kaitan antara fungsi trigonometri<ref>{{harvtxt|Protter|Morrey|1970|p=APP-7}}</ref>
Baris 85:
Dalam penerapan geometri, argumen fungsi trigonometri umumnya merupakan ukuran [[sudut]]. Setiap [[sudut]] biasanya diukur dan satuan konvensional berupa [[Derajat (satuan sudut)|derajat]]. Sebagai contoh, sudut siku-siku ditulis 90° dan putaran penuh ditulis 360°.{{Efn|Satuan konvensional ini khususnya dipakai dalam [[matematika elementer]].}}
Namun dalam [[kalkulus]] dan [[analisis matematika]], fungsi trigonometri umumnya dipandang lebih abstrak sebagai fungsi [[Bilangan real|real]] ataupun [[Bilangan kompleks|kompleks]], bukan sudut. Bahkan fungsi sepeti '''sin''' dan '''cos''' dapat didefinisikan untuk semua bilangan kompleks dalam bentuk [[fungsi eksponensial]] melalui deret pangkat,<ref name=":0">{{Cite book|last=Rudin, Walter, 1921–2010|url=https://www.worldcat.org/oclc/1502474|title=Principles of mathematical analysis|location=New York|isbn=0-07-054235-X|edition=Third|oclc=1502474|access-date=2022-08-18|archive-date=2020-01-23|archive-url=https://web.archive.org/web/20200123033536/https://www.worldcat.org/title/principles-of-mathematical-analysis/oclc/1502474|dead-url=no}}</ref> atau dapat didefinisikan sebagai penyelesaian nilai awal khusus terhadap [[persamaan diferensial]] (lihat [[Pengguna:Dedhert.Jr/Uji halaman 15#Definisi trigonometri melalui persamaan diferensial|dibawah]]).<ref>{{Cite journal|last=Diamond|first=Harvey|date=2014|title=Defining Exponential and Trigonometric Functions Using Differential Equations|url=https://www.tandfonline.com/doi/full/10.4169/math.mag.87.1.37|journal=Mathematics Magazine|language=en|volume=87|issue=1|pages=37–42|doi=10.4169/math.mag.87.1.37|issn=0025-570X|s2cid=126217060}}</ref> Definisi tersebut tidak mengacu pada gagasan dalam geometri. Adapun empat fungsi lainnya seperti '''tan''', '''cot''', '''sec''', dan '''csc''' dapat didefinisikan sebagia hasil-bagi dan timbal balik dari '''sin''' dan '''cos''', kecuali ketika nol muncul di penyebut. Untuk argumen real, hal ini dapat dibuktikan bahwa definisi tersebut sesuai dengan definisi geometri elementer ''jika argumennya dipandang sebagai sudut yang dinyatakan dalam bentuk radian''.<ref name=":0" /> Lebih lanjut, definisi tersebut memberikan hasil dalam bentuk yang sederhana untuk [[turunan]] dan [[integral taktentu]] dari fungsi trigonometri.<ref name=":1">{{Cite book|last=Spivak|first=Michael|year=1967|title=Calculus|publisher=Addison-Wesley|pages=256–257|chapter=15|lccn=67-20770}}</ref> Jadi dalam cabang selain geometri elementer, radian dipandang sebagai satuan alami dalam matematika untuk menjelaskan ukuran setiap sudut.
Ketika satuan yang dipakai adalah [[radian]], maka sudut dinyatakan sebagai panjang [[Busur (geometri)|busur]] dari [[lingkaran satuan]] yang berhadapan dengannya. Sebagai contoh, sudut yang berhadapan dengan busur dengan panjang 1 di lingkaran satuan adalah 1 rad (≈ 57,3°), dan [[Putaran (sudut)|putaran]] penuh (360°) sama dengan 2{{pi}} (≈ 6,28) rad. Untuk bilangan real {{Math|''x''}}, notasi {{Math|sin ''x''}}, {{Math|cos ''x''}}, dst. mengacu pada nilai dari fungsi trigonometri yang dihitung pada sudut ''{{Math|''x''}}'' rad. Jika satuan yang dimaksud adalah derajat, maka tanda derajat harus diperlihatkan secara eksplisit (sebagai contoh, {{Math|sin ''x''°}}, {{Math|cos ''x''°}}, dsb.). Dengan menggunakan notasi yang standar, argumen dari {{Math|''x''}} untuk fungsi trigonometri memenuhi kaitan dari rumus
Baris 94:
== Definisi fungsi trigonometri melalui lingkaran satuan ==
[[Berkas:
Enam fungsi trigonometri dapat didefinisikan sebagai [[Sistem koordinat Kartesius|nilai dari titik koordinat]] di [[bidang Euklides]] yang berkaitan dengan sebuah lingkaran berjari-jari satu yang berpusat di titik asal {{math|O}} dari koordinat sistem, yaitu [[lingkaran satuan]]. Sedangkan [[Pengguna:Dedhert.Jr/Uji halaman 15#Definisi segitiga bersiku|definisi segitiga bersiku]] yang memungkinkan definisi fungsi trigonometri untuk sudut di antara {{math|0}} dan <math display="inline">\frac{\pi}{2}</math> [[radian]] {{math|(90°),}} maka definisi lingkaran satuan memungkinkan bahwa domain dari fungsi trigonometri diperluas untuk semua bilangan real positif dan negatif.
Baris 135:
== Nilai aljabar ==
[[Berkas:
[[Bentuk aljabar]] yang berupakan sudut yang sangat penting dinyatakan sebagai berikut:
Baris 148:
Namun, bentuk aljabar yang sederhana biasanya tidak ada untuk sudut lainnya yang merupakan kelipatan rasional sudut siku-siku.
* Untuk sudut yang diukur dalam satuan derajat merupakan kelipatan dari tiga, [[Nilai trignometri eksak|nilai trigonometri eksak]] dari fungsi sinus dan kosinus dapat dinyatakan dalam bentuk akar kuadrat. Jadi, nilai tersebut dapat dikonstruksi dengan menggunakan [[Konstruksi jangka
* Untuk sudut berupa bilangan bulat dalam satuan derajat, nilai dari fungsi sinus dan kosinus dapat dinyatakan dalam bentuk akar kuadrat dan [[akar kubik]] dari [[bilangan kompleks]] takreal. [[Teori Galois]] membuktikan bahwa jika sudut bukan kelipatan dari 3°, maka akar kubik dari bilangan takreal tidak dapat dihindari.
* Untuk sudut yang dinyatakan dalam satuan derajat adalah [[bilangan rasional]], nilai fungsi sinus dan kosinus merupakan [[bilangan aljabar]] yang dapat dinyatakan dalam bentuk [[Akar ke-|akar ke-{{mvar|n}}]]. Hasil ini berasal dari suatu pernyataan yang mengatakan bahwa [[grup Galois]] dari [[polinomial siklotomik]] dikatakan [[Grup siklik|siklik]].
Baris 210:
== Dalam kalkulus ==
[[Berkas:Trigonometrija-graf.
[[Berkas:Taylorsine.svg|ka|jmpl|Grafik fungsi sinus (yang berwarna biru) sangat dihampiri oleh grafik [[Teorema Taylor|polinomial Taylor]] berderajat 7 (yang berwarna merah muda) untuk putaran siklus penuh pada titik asal.]]
[[Berkas:
[[Berkas:
Fungsi trigonometri dikatakan [[Fungsi terdiferensialkan|terdiferensialkan]] dan [[Fungsi analitik|analitik]] di setiap titik yang didefinisikannya. Artinya, titik-titik tersebut ada dimana-mana untuk fungsi trigonometri seperti sinus, kosinus. Titik-titik tersebut ada dimana-mana di fungsi tangen, kecuali di {{math|{{pi}}/2 + ''k''{{pi}}}} untuk setiap bilangan bulat {{mvar|k}}.
Baris 245:
</math>
[[Ruji kekonvergenan]] dari deret tersebut adalah takhingga. Jadi, fungsi sinus dan kosinus dapat diperluas menjadi [[fungsi menyeluruh]], atau fungsi ini disebut "sinus" dan "kosinus"),
Ketika kedua fungsi tersebut didefinisikan sebagai pecahan dari fungsi menyeluruh, fungsi trigonometri lainnya dapat diperluas menjadi [[fungsi meromorfik]]. Hal ini mengartikan bahwa fungsi adalah holomorfik di seluruh bidang kompleks, kecuali ada setiap titik terpencil yang disebut [[Nol dan kutub|kutub]]. Disini, kutubnya merupakan bilangan-bilangan dari bentuk <math display="inline">(2k+1)\frac \pi 2</math> untuk fungsi tangen dan fungsi sekan, atau <math>k\pi</math> untuk fungsi kotangen dan fungsi kosekan, dengan {{mvar|k}} adalah bilangan bulat sebarang.
Baris 322:
=== Perluasan darab takhingga ===
Darab takhingga untuk fungsi sinus sangat penting dalam [[analisis kompleks]], yang dinyatakan sebagai:
: <math>\sin z = z \prod_{n=1}^\infty \left(1-\frac{z^2}{n^2 \pi^2}\right), \quad z\in\mathbb C.</math>
Baris 331:
=== Kaitan dengan rumus Euler ===
[[Berkas:
[[Rumus Euler]] mengaitkan fungsi sinus dan kosinus dengan [[fungsi eksponensial]]:
Baris 452:
Dengan memisalkan <math>t=\tan \tfrac12 \theta</math>, maka semua fungsi trigonometri dari <math>\theta</math> dapat dinyatakan sebagai [[pecahan rasional]] dari <math>t</math>:
:<math>\sin \theta = \frac{2t}{1+t^2}, \cos \theta = \frac{1-t^2}{1+t^2}, \tan \theta = \frac{2t}{1-t^2}, d\theta = \frac{2}{1+t^2} \, dt.</math>
Fungsi yang terakhir merupakan [[substitusi setengah sudut tangen]], yang dipakai untuk membantu perhitungan [[integral]] dari fungsi trigonometri lain menjadi [[fungsi rasional]] tersebut.
===Turunan dan integral dari fungsi trigonometri===
Baris 519:
[[File:Sawtooth Fourier Animation.gif|thumb|280px|Fungsi basis sinusoidal pada animasi di bawah dapat membentuk gelombang geriji seperti animasi di atas saat menambahkan beberapa suku.]]
Fungsi periodik {{math|1=''f'' (''x'')}} umumnya dapat dinyatakan sebagai jumlah [[gelombang sinus]] atau gelombang kosinus dalam [[deret Fourier]].<ref name="Folland_1992"/> Dengan Melambangkan [[fungsi basis]] sinus atau kosinus sebagai {{mvar|φ<sub>k</sub>}}, maka ekspansi dari fungsi periodik {{math|1=''f'' (''t'')}} membentuk:
: <math> f(t) = \sum _{k=1}^\infty c_k \varphi_k(t). </math>
Sebagai contoh, fungsi dari [[gelombang persegi]] dapat ditulis sebagai [[deret Fourier]]
Baris 561:
* {{citation |last1=Nielsen |first1=Kaj L. |title=Logarithmic and Trigonometric Tables to Five Places |edition=2nd |location=New York|publisher=[[Barnes & Noble]] |date=1966 |lccn=61-9103}}
* O'Connor, J. J., and E. F. Robertson, [https://web.archive.org/web/20130120084848/http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Trigonometric_functions.html "Trigonometric functions"], ''[[MacTutor History of Mathematics archive]]''. (1996).
* O'Connor, J. J., and E. F. Robertson, [http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Madhava.html "Madhava of Sangamagramma"] {{Webarchive|url=https://web.archive.org/web/20060226001644/http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Madhava.html |date=2006-02-26 }}, ''[[MacTutor History of Mathematics archive]]''. (2000).
* Pearce, Ian G., [http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch9_3.html "Madhava of Sangamagramma"] {{Webarchive|url=https://web.archive.org/web/20060505201342/http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch9_3.html |date=2006-05-05 }}, ''[[MacTutor History of Mathematics archive]]''. (2002).
* {{ citation | last1 = Protter | first1 = Murray H. | last2 = Morrey | first2 = Charles B., Jr. | year = 1970 | lccn = 76087042 | title = College Calculus with Analytic Geometry | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }}
* Weisstein, Eric W., [http://mathworld.wolfram.com/Tangent.html "Tangent"] {{Webarchive|url=https://web.archive.org/web/20060719202529/http://mathworld.wolfram.com/Tangent.html |date=2006-07-19 }} from ''[[MathWorld]]'', diakses pada tanggal 21 Januari 2006.
{{refend}}
{{div col end}}
|