Reaktor nuklir: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Reverted to revision 17194177 by 118.96.114.190 (talk) Tag: Pembatalan |
merapikan Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler |
||
(26 revisi perantara oleh 10 pengguna tidak ditampilkan) | |||
Baris 1:
[[Berkas:Crocus-p1020491.jpg|jmpl|250px|Teras sebuah reaktor kecil yang digunakan untuk penelitian.]]
'''Reaktor nuklir''' adalah suatu tempat atau perangkat yang digunakan untuk membuat, mengatur, dan menjaga kesinambungan [[reaksi nuklir]] berantai pada laju yang tetap. Berbeda dengan [[bom nuklir]], yang reaksi berantainya terjadi pada orde pecahan detik dan tidak terkontrol.
Reaktor nuklir digunakan untuk banyak tujuan. Saat ini, reaktor nuklir paling banyak digunakan untuk membangkitkan listrik. [[Reaktor penelitian]] digunakan untuk pembuatan [[radioisotop]] (isotop radioaktif) dan untuk penelitian. Awalnya, reaktor nuklir pertama digunakan untuk memproduksi [[plutonium]] sebagai bahan [[senjata nuklir]].
Saat ini, semua reaktor nuklir komersial berbasis pada reaksi [[fisi nuklir]], dan sering dipertimbangkan masalah [[risiko]] [[keselamatan]]nya. Sebaliknya, beberapa kalangan menyatakan bahwa [[pembangkit listrik tenaga nuklir]] merupakan cara yang aman dan bebas polusi untuk membangkitkan listrik. [[Daya fusi]] merupakan teknologi ekperimental yang berbasi pada reaksi [[fusi nuklir]]. Ada beberapa peranti lain untuk mengendalikan reaksi nuklir, termasuk di dalamnya [[pembangkit thermoelektrik radioisotop|pembangkit thermoelektrik radioisotop,]] dan [[baterai atom]], yang membangkitkan panas dan daya dengan cara memanfaatkan peluruhan radioaktif pasif, seperti halnya [[Farnsworth-Hirsch fusor]], di mana reaksi fusi nuklir terkendali digunakan untuk menghasilkan [[radiasi neutron]].
== Aplikasi ==
Baris 27:
[[Berkas:CANDU fuel cycles.jpg|jmpl|ka|400px|Range of possible CANDU fuel cycles: CANDU reactors can accept a variety of fuel types, including the used fuel from light-water reactors]]
[[Berkas:SchémaDechetsNucleaires en.svg|400px|jmpl|Nuclear Fuel Process]]
Meskipun umat manusia telah menguasai daya nuklir baru-baru ini, reaktor nuklir yang pertama muncul dikendalikan oleh alam. Lima belas reaktor fisi nuklir alami telah ditemukan di tambang [[Oklo]], [[Gabon]], [[
Reaktor nuklir yang mandiri pertama kali dibangun pada 2 Desember [[1942]] dan diberi nama [[Chicago Pile-1]].<ref>{{Cite book|last=Ardiansyah, H.|url=https://penerbit.brin.go.id/press/catalog/download/562/479/11500?inline=1|title=Indonesia Post-pandemic Outlook: Strategy Towards Net-zero Emissions by 2060 from the Renewables and Carbon-neutral Energy Perspectives|publisher=BRIN Publishing|isbn=978-623-7425-83-0|editor-last=Ardiansyah, H., dan Ekadewi, P.|pages=182|chapter=The Case for Nuclear Energy|doi=10.55981/brin.562.c10|url-status=live}}</ref> Pembangunannya dirancang oleh [[Enrico Fermi]] dan [[Leó Szilárd]] saat mereka di [[Universitas Chicago]].
Reaktor nuklir generasi pertama yang dibuat oleh [[Enrico Fermi]] digunakan untuk menghasilkan plutonium. Karena keberhasilan ini, [[Franklin Delano Roosevelt]] selaku [[Presiden Amerika Serikat]] menjadikan plutonium sebagai
Pada 20 Desember [[1951]],
PLTN skala komersial pertama dunia adalah [[:en:Sellafield|Calder Hall]], yang mulai beroperasi pada 17 Oktober [[1956]]
Sebelum [[Musibah Pulau Three Mile]] pada tahun [[1979]], sebenarnya permintaan akan PLTN baru di Amerika Serikat sudah menurun karena alasan ekonomi. Dari tahun 1978 sampai dengan [[2004]], tidak ada permintaan PLTN baru di Amerikat Serikat
Tidak seperti halnya kecelakaan Three Mile Island, [[bencana Chernobyl]] pada tahun 1986 tidak berpengaruh pada peningkatan standar reaktor nuklir negara barat. Hal ini dikarenakan memang reaktor Chernobyl dikenal mempunyai desain yang tidak aman, menggunakan reaktor jenis [[RBMK]], tanpa [[kubah pengaman]] (containment building) dan dioperasikan dengan tidak aman, dan pihak barat memetik pelajaran dari hal ini
Pada tahun [[1992]] [[topan Andrew]] menghamtam [[Turkey Point Nuclear Generating Station]]. Lebih dari US$90 juta kerugian yang diderita, sebagian besar menimpa tangki penampungan air dan cerobong asap pembangkit listrik berbahan bakar fossil (minyak/batubara) yang ada dilokasi, tapi [[containment building]] tidak mengalami kerusakan
== Operasi ==
[[Neutron]] diserap oleh inti atom uranium-235, yang pada gilirannya terpecah menjadi elemen ringan yang bergerak cepat (produk fisi) dan neutron bebas. Meskipun kedua reaktor dan senjata nuklir bergantung pada reaksi berantai nuklir, laju reaksi dalam reaktor jauh lebih lambat daripada di bom.
Sama seperti pembangkit listrik termal konvensional menghasilkan listrik dengan memanfaatkan energi panas yang dilepaskan dari pembakaran bahan bakar fosil, reaktor nuklir mengubah energi yang dilepaskan oleh fisi nuklir terkontrol menjadi [[energi panas]] untuk konversi lebih lanjut ke bentuk [[mekanik]] atau [[listrik]].
=== Fisi ===
Ketika inti atom fisil besar seperti [[uranium-235]] atau [[plutonium-239]] menyerap neutron, ia dapat mengalami [[fisi nuklir]]. Inti berat terbagi menjadi dua atau lebih inti ringan, (produk fisi), melepaskan [[energi kinetik]], [[radiasi gamma]], dan [[neutron]] bebas. Sebagian dari neutron ini dapat diserap oleh atom fisil lain dan memicu peristiwa fisi lebih lanjut, yang melepaskan lebih banyak neutron, dan seterusnya. Ini dikenal sebagai reaksi berantai nuklir.
Untuk mengendalikan reaksi berantai nuklir seperti itu, batang kendali yang mengandung racun neutron dan [[moderator neutron]] dapat mengubah bagian neutron yang akan menyebabkan lebih banyak fisi. Reaktor nuklir umumnya memiliki sistem otomatis dan manual untuk mematikan reaksi fisi jika pemantauan atau instrumentasi mendeteksi kondisi yang tidak aman.
=== Pembangkit panas ===
[[Inti reaktor]] menghasilkan '''[[panas]]''' dalam beberapa cara:
* [[Energi kinetik]] dari produk fisi diubah menjadi energi panas ketika inti ini bertabrakan dengan atom di dekatnya.
* Reaktor menyerap sebagian [[sinar gamma]] yang dihasilkan selama fisi dan mengubah energinya menjadi panas.
* Panas dihasilkan oleh peluruhan radioaktif produk fisi dan bahan yang telah diaktifkan oleh penyerapan neutron. Sumber panas peluruhan ini akan tetap ada selama beberapa waktu bahkan setelah reaktor dimatikan.
Satu kilogram uranium-235 (U-235) dikonversi melalui proses rilis nuklir sekitar tiga juta kali lebih banyak energi daripada satu kilogram batubara dibakar secara konvensional (7,2 × 10 13 joule per kilogram uranium-235 vs 2,4 × 10 7 joule per kilogram batu bara).
=== Moderator neutron dan Pendinginan ===
Sebuah pendingin nuklir reaktor- biasanya air tapi kadang-kadang gas atau logam cair (seperti natrium cair atau timbal) atau garam cair- disirkulasikan melewati inti reaktor untuk menyerap panas yang dihasilkannya. Panas dibawa pergi dari reaktor dan kemudian digunakan untuk menghasilkan uap. Kebanyakan sistem reaktor menggunakan sistem pendingin yang secara fisik terpisah dari air yang akan direbus untuk menghasilkan uap bertekanan untuk turbin, seperti reaktor air bertekanan. Namun, di beberapa reaktor air untuk turbin uap direbus langsung oleh teras reaktor; misalnya reaktor air mendidih.
;Moderator neutron
Dalam [[teknik nuklir]], [[moderator neutron]] atau pelambat neutron adalah sebuah medium yang mengurangi kecepatan [[neutron cepat]], sehingga mengubahnya menjadi [[neutron termal]] yang dapat mendukung [[reaksi nuklir berantai]] yang melibatkan [[uranium-235]] atau [[bahan fisi]] serupa.
Pada sekitar 2000-an, bahan yang paling umum digunakan sebagai moderator neutron adalah [[air|air biasa]] (sekitar 75% seluruh reaktor nuklir dunia), [[grafit nuklir|grafit padat]] (20% reaktor) dan [[air berat]] (5% reactor, disebut [[reaktor air berat]]).<ref>{{cite book
| last = Miller, Jr.
| first = George Tyler
| authorlink =
| title = Living in the Environment: Principles, Connections, and Solutions (12th Edition)
| publisher = [[The Thomson Corporation]]
| year = 2002
| location = Belmont
| pages = 345
| url =
| isbn = 0-534-37697-5}}</ref><ref>{{cite book|last1=Kratz|first1=Jens-Volker|last2=Lieser|first2=Karl Heinrich|title=Nuclear and Radiochemistry: Fundamentals and Applications|date=2013|publisher=John Wiley & Sons|isbn=9783527653355|edition=3|url=https://books.google.com/books?id=gXNwAAAAQBAJ&q=neutron+moderator+kinetic+energy+%22boltzmann+constant%22&pg=PT346|access-date=27 April 2018}}</ref><ref>{{cite book|last1=De Graef|first1=Marc|last2=McHenry|first2=Michael E.|title=Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry|date=2012|publisher=Cambridge University Press|isbn=9781139560474|page=324|url=https://books.google.com/books?id=NMUgAwAAQBAJ&q=neutron+moderator+kinetic+energy+%22boltzmann+constant%22&pg=PA324|access-date=27 April 2018}}</ref><ref name="
Weston">{{cite book
| last = Stacey.
| first = Weston M
| title = Nuclear reactor physics
| publisher = [[Wiley-VCH]]
| year = 2007
| pages = 29–31
| url = https://books.google.com/books?id=iolyNyJYEaYC
| isbn = 978-3-527-40679-1
}}{{Pranala mati|date=Februari 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><ref name="
DB">{{cite book |last= Dobrzynski |first= L. |author2=K. Blinowski |title= Neutrons and Solid State Physics|publisher= Ellis Horwood Limited |year= 1994 |isbn= 0-13-617192-3}}</ref>
Selain itu, dalam penelitian [[berilium]] juga pernah digunakan, dan berbagai senyawa [[hidrokarbon]] juga disebutkan memiliki kemungkinan dapat dipakai.<ref name="arregui16b">{{cite journal | last1 = Arregui Mena | first1 = J.D. | display-authors = etal | year = 2016 | title = Spatial variability in the mechanical properties of Gilsocarbon | url = https://www.researchgate.net/publication/308515387 | journal = Carbon | volume = 110| pages = 497–517| doi = 10.1016/j.carbon.2016.09.051}}</ref><ref name="arregui18">{{cite journal | last1 = Arregui Mena | first1 = J.D. | display-authors = etal | year = 2018 | title = Characterisation of the spatial variability of material properties of Gilsocarbon and NBG-18 using random fields | url = https://www.researchgate.net/publication/327537624 | journal = Journal of Nuclear Materials | volume = 511 | pages = 91–108| doi = 10.1016/j.jnucmat.2018.09.008| bibcode = 2018JNuM..511...91A }}</ref><ref name="upshot">[http://www.nuclearweaponarchive.org/Usa/Tests/Upshotk.html Operation Upshot–Knothole]</ref><ref name="globalsecurity">[http://www.globalsecurity.org/wmd/systems/w48.htm W48] - globalsecurity.org</ref><ref>{{Cite web |url=http://www.ask.ne.jp/~hankaku/english/np5y.html |title=Atomic Bomb Chronology: 1942-1944 |access-date=2008-12-16 |archive-url=https://web.archive.org/web/20080528074940/http://www.ask.ne.jp/~hankaku/english/np5y.html |archive-date=2008-05-28 |url-status=dead }}</ref><ref>[[Hans Bethe]] in ''[[Physics Today]]'' Vol 53 (2001) [http://www.nd.edu/~nsl/Lectures/phys205/pdf/Nuclear_warfare_3.pdf]</ref>
Bahan yang digunakan:
* [[Hydrogen]], seperti dalam " air ringan " biasa. Karena protium juga memiliki penampang melintang yang signifikan untuk penangkapan neutron, hanya moderasi terbatas yang dimungkinkan tanpa kehilangan terlalu banyak neutron. Neutron yang kurang dimoderasi relatif lebih mungkin untuk ditangkap oleh uranium-238 dan lebih kecil kemungkinannya untuk fisi uranium-235, sehingga reaktor air ringan memerlukan uranium yang diperkaya untuk beroperasi.
** Ada juga usulan untuk menggunakan senyawa hasil reaksi kimia uranium logam dan hidrogen (uranium hidrida —UH 3) sebagai bahan bakar kombinasi dan moderator dalam reaktor tipe baru.
** Hidrogen juga digunakan dalam bentuk metana cair kriogenik dan kadang-kadang hidrogen cair sebagai sumber neutron dingin di beberapa reaktor penelitian : menghasilkan distribusi Maxwell-Boltzmann untuk neutron yang maksimumnya bergeser ke energi yang jauh lebih rendah.
** Hidrogen dikombinasikan dengan karbon seperti dalam lilin parafin digunakan dalam beberapa percobaan Jerman awal.
* [[Deuterium]], dalam bentuk air berat, dalam reaktor air berat, misalnya CANDU. Reaktor yang dimoderasi dengan air berat dapat menggunakan uranium alam yang tidak diperkaya.
* [[Carbon]], dalam bentuk grafit tingkat reaktor atau karbon pirolitik, digunakan misalnya dalam reaktor RBMK dan pebble-bed, atau dalam senyawa, misalnya karbon dioksida. Reaktor suhu rendah rentan terhadap penumpukan energi Wigner dalam material. Seperti reaktor yang dimoderasi deuterium, beberapa reaktor ini dapat menggunakan uranium alam yang tidak diperkaya.
** Grafit juga sengaja dibiarkan dipanaskan hingga sekitar 2000 K atau lebih tinggi di beberapa reaktor penelitian untuk menghasilkan sumber neutron panas : memberikan distribusi Maxwell-Boltzmann yang maksimumnya menyebar untuk menghasilkan energi neutron yang lebih tinggi.
* [[Berilium]] tegolongan sebagai logam ringan. Namun karena kandungan racun di dalamnya sangat tinggi, berilium terkadang digolongkan pula sebagai logam berat.<ref>{{Cite book|last=Dewata, I., dan Danha, Y. H.|date=2021|url=http://repository.unp.ac.id/32784/2/INDANG_DEWATA_Toksikologi_Lingkungan.pdf|title=Toksikologi Lingkungan: Konsep dan Aplikatif|location=Depok|publisher=Rajawali Pers|isbn=978-623-231-973-8|editor-last=Vidyafi|editor-first=Indi|pages=131|url-status=live}}</ref> Berilium mahal harganya sehingga penggunaannya terbatas.
* [[Lithium]]-7, dalam bentuk garam litium fluorida, biasanya bersama dengan garam berilium fluorida (FLiBe). Ini adalah jenis moderator yang paling umum dalam reaktor garam cair.
Bahan inti ringan lainnya tidak cocok karena berbagai alasan. Helium adalah gas dan memerlukan desain khusus untuk mencapai kepadatan yang cukup; lithium-6 dan boron-10 menyerap neutron.<ref name="herk">{{cite book |author-link=Gregg Herken |first=Gregg |last=Herken |title=Brotherhood of the Bomb |url=https://archive.org/details/brotherhoodofbom0000herk |url-access=registration |date=2003}}</ref><ref name="swordsoarIII">{{cite book |author-link=Chuck Hansen |first=Chuck |last=Hansen |title=Swords of Armageddon |volume=III |date=1995 |url=http://www.uscoldwar.com |access-date=2016-12-28}}</ref><ref name="swordsoarI">{{cite book |author-link=Chuck Hansen |first=Chuck |last=Hansen |title=Swords of Armageddon |volume=I |date=1995 |url=http://www.uscoldwar.com |access-date=2016-12-28}}</ref><ref name="swordsoarVII">{{cite book |author-link=Chuck Hansen |first=Chuck |last=Hansen |title=Swords of Armageddon |volume=VII |date=1995 |url=http://www.uscoldwar.com |access-date=2016-12-28}}</ref><ref name="Rose1998">{{cite book|author=Paul Lawrence Rose|author-link=Paul Lawrence Rose|title=Heisenberg and the Nazi Atomic Bomb Project: A Study in German Culture|url=https://archive.org/details/isbn_9780520229266|url-access=registration|access-date=6 May 2017|year=1998|publisher=[[University of California Press]]|isbn=978-0-520-21077-6|page=[https://archive.org/details/isbn_9780520229266/page/211 211]}}</ref>
<ref>[http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1.7.3 Nuclear Weapons Frequently Asked Questions - 4.1.7.3.2 Reflectors]</ref><ref name="killus">[http://unintentional-irony.blogspot.com/2007/07/n-moderation.html N Moderation]</ref>
{| class="wikitable"
|+Moderator Reaktor [[PLTN]] saat ini
|-
!Moderator!!Reaktor!!Desain!!Negara
|-
|kosong ([[fast neutron reactor|cepat]])||1||[[BN-600]], [[BN-800 reactor|BN-800]]||Rusia (2)
|-
|grafit||25||[[Advanced gas-cooled reactor|AGR]], [[Magnox]], [[RBMK]]|| Inggris (14), Rusia (9)
|-
|air berat||29||[[CANDU]], [[Pressurized heavy-water reactor|PHWR]] ||Kanada (17), Korea Selatan (4), Rumania (2), Cina (2),<br /> India (18), Argentina, Pakistan
|-
|air ringan||359||[[Pressurized water reactor|PWR]], [[Boiling water reactor|BWR]]||27 negara
|}
;Pendingin reaktor nuklir
[[Pendingin reaktor nuklir]] adalah [[pendingin]] dalam reaktor nuklir yang digunakan untuk menghilangkan [[panas]] dari [[inti]] reaktor nuklir dan transfer ke [[generator listrik]] dan lingkungan. Seringkali, rantai dua loop pendingin digunakan karena loop pendingin primer mengambil radioaktivitas jangka pendek dari reaktor.<ref>
{{
cite web|
title=as the result of routine, approved releases;from google (why tritium leak) result 2|
url=https://www.nrc.gov/reactors/operating/ops-experience/tritium/sites-grndwtr-contam.html
}}
</ref><ref>
{{
cite web|
title=Partial Meltdowns Led to Hydrogen Explosions at Fukushima Nuclear Power Plant;from google (fukushima hydrogen explosion) result 1|
url=https://www.scientificamerican.com/article/partial-meltdowns-hydrogen-explosions-at-fukushima-nuclear-power-plant/
}}
</ref><ref>{{Cite web|url=https://www.nrc.gov/reading-rm/basic-ref/students/for-educators/04.pdf|title=Pressurized Water Reactor Systems|website=USNRC Technical Training Center|access-date=March 12, 2019}}</ref>
Dalam reaktor daya sirkuit ganda (misalnya, VVER), pendingin dari reaktor memasuki generator uap, di mana uap dihasilkan, yang menggerakkan turbin, dan dalam reaktor sirkuit tunggal (misalnya, RBMK) pendingin itu sendiri (uap-air atau gas) dapat berfungsi sebagai fluida kerja siklus turbin. Dalam penelitian (misalnya, ilmu material) dan reaktor khusus (misalnya, dalam reaktor untuk akumulasi isotop radioaktif), pendingin hanya mendinginkan reaktor, panas yang dihasilkan tidak digunakan.<ref>{{Cite web|url=https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/075/28075997.pdf|title=Water Chemistry and Behavior of Materials in PWRs and BWRs|last=Aaltonen1, Hanninen2|first=P.1, H.2|website=VTT Manufacturing Technology|access-date=March 12, 2019}}</ref><ref>{{Cite web|url=https://ocw.mit.edu/courses/nuclear-engineering/22-06-engineering-of-nuclear-systems-fall-2010/lectures-and-readings/MIT22_06F10_lec18.pdf|title=Nuclear Safety|last=Buongiorno|first=Jacopo|website=MIT OpenCourseWare|access-date=March 12, 2019}}</ref><ref>{{Cite web|url=https://www.columbuschemical.com/MSDS/SDS/Borated%20Water%200881.pdf|title=Borated Water|website=Columbus Chemical Industries|access-date=March 12, 2019}}</ref><ref name=":0">{{Cite web|url=http://fhr.nuc.berkeley.edu/wp-content/uploads/2014/10/12-007_Boron_Use_in_PWRs_and_FHRs.pdf|title=Boron Use and Control in PWRs and FHRs|last=Monterrosa|first=Anthony|date=May 5, 2012|website=Department of Nuclear Engineering, University of California, Berkeley|access-date=March 12, 2019}}</ref>
Persyaratan berikut dikenakan pada pendingin:
* Penyerapan neutron yang lemah (dalam reaktor termal) atau perlambatan yang lemah (dalam reaktor cepat);
* Ketahanan kimia dalam kondisi paparan radiasi yang intens;
* Korosif rendah dalam kaitannya dengan bahan struktural yang kontak dengan pendingin;
* Tinggi koefisien perpindahan panas ;
* Kapasitas panas spesifik yang besar ;
* Tekanan kerja rendah pada suhu tinggi.
Dalam reaktor termal, air (biasa dan berat), uap air , cairan organik, karbon dioksida digunakan sebagai pendingin; dalam reaktor neutron cepat menggunakan logam cair (terutama natrium , serta gas (misalnya, uap air, helium). Seringkali cairan berfungsi sebagai pembawa panas, yang sekaligus sebagai moderator.
{| class="wikitable sortable" align="center"
|+Pendingin reaktor nuklir
!Pendingin!![[Titik lebur]]!![[Titik didih]]
|-
|[[Air berat]] at 154 bar|| ||345 °C
|-
|[[NaK]] eutectic||-11 °C ||785 °C
|-
|[[Sodium]]||97.72 °C||883 °C
|-
|[[FLiNaK]]||454 °C||1570 °C
|-
|[[FLiBe]]||459 °C||1430 °C
|-
|[[Timbal]]||327.46 °C||1749 °C
|-
|[[Lead-bismuth eutectic]]||123.5 °C ||1670 °C
|}
=== Kontrol reaktivitas ===
Laju reaksi fisi di dalam teras reaktor dapat diatur dengan mengontrol jumlah neutron yang mampu menginduksi peristiwa fisi lebih lanjut. Reaktor nuklir biasanya menggunakan beberapa metode kontrol neutron untuk menyesuaikan keluaran daya reaktor. Beberapa dari metode ini muncul secara alami dari fisika peluruhan radioaktif dan hanya diperhitungkan selama operasi reaktor, sementara yang lain adalah mekanisme yang direkayasa ke dalam desain reaktor untuk tujuan yang berbeda.
Metode tercepat untuk mengatur tingkat neutron yang menginduksi fisi dalam reaktor adalah melalui pergerakan batang kendali. Batang kendali terbuat dari racun neutron dan karenanya menyerap neutron. Ketika batang kendali dimasukkan lebih dalam ke dalam reaktor, ia menyerap lebih banyak neutron daripada material yang digantikannya—sering kali moderator. Tindakan ini menghasilkan lebih sedikit neutron yang tersedia untuk menyebabkan fisi dan mengurangi keluaran daya reaktor. Sebaliknya, mengekstraksi batang kendali akan menghasilkan peningkatan laju peristiwa fisi dan peningkatan daya.
Batang kendali digunakan dalam reaktor nuklir untuk mengontrol laju fisi uranium atau plutonium. Komposisi mereka termasuk unsur-unsur kimia, seperti boron, kadmium, perak, hafnium, atau indium, yang mampu menyerap banyak neutron tanpa fisi sendiri. Unsur-unsur ini memiliki penampang penangkap neutron yang berbeda untuk neutron dari berbagai energi. Reaktor air mendidih (BWR), reaktor air bertekanan (PWR), danreaktor air berat (HWR) beroperasi dengan neutron termal, sedangkan reaktor breeder beroperasi dengan neutron cepat. Setiap desain reaktor dapat menggunakan bahan batang kendali yang berbeda berdasarkan spektrum energi neutronnya. Paduan atau senyawa juga dapat digunakan, seperti baja boron tinggi, paduan perak-indium-kadmium, boron karbida, zirkonium diborida, titanium diborida, hafnium diborida, gadolinium nitrat, gadolinium titanat, disprosium titanat, dan komposit boron karbida-europium hexaboride.
Pilihan material dipengaruhi oleh energi neutron dalam reaktor, ketahanannya terhadap pembengkakan yang diinduksi neutron, dan sifat mekanik dan umur yang diperlukan. Batang mungkin memiliki bentuk tabung yang diisi dengan pelet atau bubuk penyerap neutron. Tabung dapat dibuat dari baja tahan karat atau bahan "jendela neutron" lainnya seperti zirkonium, kromium, silikon karbida , atau kubus.
Di beberapa reaktor, pendingin juga bertindak sebagai moderator neutron. Moderator meningkatkan daya reaktor dengan menyebabkan neutron cepat yang dilepaskan dari fisi kehilangan energi dan menjadi neutron termal. Neutron termal lebih mungkin daripada neutron cepat untuk menyebabkan fisi. Jika pendingin adalah moderator, maka perubahan suhu dapat mempengaruhi densitas pendingin/moderator dan karena itu mengubah output daya. Pendingin suhu yang lebih tinggi akan kurang padat, dan karena itu moderator kurang efektif.
Di reaktor lain, pendingin bertindak sebagai racun dengan menyerap neutron dengan cara yang sama seperti yang dilakukan batang kendali. Dalam reaktor ini output daya dapat ditingkatkan dengan memanaskan pendingin, yang membuatnya menjadi racun yang kurang padat. Reaktor nuklir umumnya memiliki sistem otomatis dan manual untuk mengais reaktor dalam keadaan darurat shutdown. Sistem ini memasukkan sejumlah besar racun (sering kali boron dalam bentuk asam borat) ke dalam reaktor untuk menghentikan reaksi fisi jika kondisi yang tidak aman terdeteksi atau diantisipasi.
Sebagian besar jenis reaktor sensitif terhadap proses yang dikenal sebagai keracunan xenon, atau lubang yodium. Produk fisi umum Xenon-135 yang dihasilkan dalam proses fisi bertindak sebagai racun neutron yang menyerap neutron dan oleh karena itu cenderung mematikan reaktor.
Reaktor yang digunakan dalam propulsi nuklir kelautan (terutama kapal selam nuklir) sering kali tidak dapat dijalankan dengan daya terus menerus sepanjang waktu dengan cara yang sama seperti reaktor daya berbasis darat biasanya dijalankan, dan sebagai tambahan sering kali harus memiliki masa pakai inti yang sangat lama tanpa pengisian bahan bakar.
=== Pembangkit tenaga listrik ===
Energi yang dilepaskan dalam proses fisi menghasilkan panas, beberapa di antaranya dapat diubah menjadi energi yang dapat digunakan. Metode umum untuk memanfaatkan energi panas ini adalah mengambil memindahkan panas air didih dari reaktor ke steam generator heat exchanger untuk menghasilkan uap bertekanan tinggi yang kemudian akan menggerakkan turbin uap yang memutar alternator dan menghasilkan listrik.
== Masa depan industri nuklir ==
Baris 162 ⟶ 301:
* Molten salt reactor
* Aqueous Homogeneous Reactor (AHR)
=== Efisiensi reaktor nuklir ===
{| class="wikitable left"
|+ Suhu cairan pendingin maksimum dan dengan demikian efisiensi Carnot yang dapat dicapai secara teoritis (pada suhu sekitar 25 °C) serta efisiensi nyata
|- class="hintergrundfarbe6"
! Jenis reaktor
! Suhu dalam °C
! [[Siklus Carnot|Efisiensi Carnot]]
! Efisiensi nyata
|- style="vertical-align:top"
| [[Reaktor air mendidih]]
| 285
| 47 %
| 34–35 %
|-
| [[RBMK]]
| 285
| 47 %
| 31 %
|-
| [[Reaktor CANDU]]
| 300
| 48 %
| 31 %
|-
| [[Reaktor air bertekanan]]
| 320
| 50 %
| 33–35 %
|-
| [[Reaktor pembiak]], berpendingin natrium
| 550
| 64 %
| 39 %
|-
| [[Advanced Gas-cooled Reactor]]
| 650
| 68 %
| 42 %
|-
| Reaktor suhu tinggi
| 750
| 71 %
| 41 %
|}
== Pengisian bahan bakar online ==
[[Berkas:CANDU Reactor Schematic.svg|300px|jmpl|Skema reaktor CANDU, PHWR.]]
[[Berkas:RBMK en.svg|300px|jmpl|Skema RBMK.]]
[[Berkas:AGR reactor schematic.svg|300px|jmpl|Skema reaktor AGR.]]
Dalam [[teknologi]] [[tenaga nuklir]], [[pengisian bahan bakar online]] adalah [[teknik]] untuk mengubah [[bahan bakar]] reaktor nuklir]saat [[reaktor]] kritis, mengisi bahan bakar reaktor sambil menghasilkan daya. Hal ini memungkinkan reaktor untuk terus menghasilkan [[listrik]] selama pengisian bahan bakar rutin, dan oleh karena itu meningkatkan ketersediaan dan [[keuntungan]] pembangkit.<ref>{{Cite web|url = http://www-pub.iaea.org/mtcd/publications/pdf/te_1315_web.pdf|title = Nuclear power plant outage optimisation strategy|date = |accessdate = 4 July 2015|website = |publisher = IAEA|last = |first = }}</ref><ref>{{Cite web|title = Plutonium|url = http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Fuel-Recycling/Plutonium/|website = www.world-nuclear.org|accessdate = 2015-07-04|archive-date = 2015-08-18|archive-url = https://web.archive.org/web/20150818074517/http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Fuel-Recycling/Plutonium/|dead-url = yes}}</ref><ref>{{Cite web|title = Nuclear Fuel Cycle Overview|url = http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/Nuclear-Fuel-Cycle-Overview/|website = www.world-nuclear.org|accessdate = 2015-07-04|archive-date = 2016-01-30|archive-url = https://web.archive.org/web/20160130090805/http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/Nuclear-Fuel-Cycle-Overview/|dead-url = yes}}</ref>
Sebagian besar reaktor perlu dimatikan untuk pengisian bahan bakar, sampai bejana reaktor dapat dibuka. Dalam hal ini pengisian bahan bakar dilakukan pada [[interval]] 12, 18 atau 24 [[bulan]], ketika seperempat hingga sepertiga dari rakitan bahan bakar diganti dengan yang baru. Jenis CANDU, PHWR dan RBMK memiliki [[tabung]] [[tekanan]] (bukan bejana tekan yang menutupi [[inti]] reaktor) dan dapat diisi ulang di bawah beban dengan melepaskan tabung tekanan individu. AGR juga dirancang untuk pengisian bahan bakar on-load. Jika [[grafit]] atau [[air berat]] digunakan sebagai [[moderator]], adalah mungkin untuk menjalankan reaktor daya di atas [[uranium]] alami, bukan uranium yang diperkaya.
Pengisian bahan bakar online memungkinkan reaktor nuklir untuk terus menghasilkan listrik selama periode pengisian bahan bakar rutin, dan oleh karena itu meningkatkan ketersediaan dan oleh karena itu meningkatkan ekonomi. Selain itu, ini memungkinkan lebih banyak fleksibilitas dalam [[jadwal]] pengisian bahan bakar reaktor, pertukaran sejumlah kecil elemen bahan bakar pada suatu waktu daripada program pengisian bahan bakar offline intensitas tinggi.<ref name=hawley-2006>{{Cite journal|url=http://www.world-nuclear.org/sym/2006/restore/haw-rest.htm|title=Nuclear Power in the UK - Past, Present & Future|author=Robert Hawley - former CEO of Nuclear Electric and British Energy|publisher=[[World Nuclear Association]] Annual Symosium|year=2006|archiveurl=https://web.archive.org/web/20081214183208/http://www.world-nuclear.org/sym/2006/restore/haw-rest.htm|archivedate=14 December 2008}}</ref><ref>{{Cite web|url = http://web.mit.edu/pebble-bed/papers1_files/Future%20for%20Nuclear%20Energy.pdf|title = A future for nuclear energy: pebble bed reactors|date = 2005|accessdate = 4 July 2015|website = |publisher = MIT|last = Kadak|first = Andrew}}</ref><ref>{{Cite web|title = Nuclear Reactors {{!}} Nuclear Power Plant {{!}} Nuclear Reactor Technology|url = http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Nuclear-Power-Reactors/|website = www.world-nuclear.org|accessdate = 2015-07-04|archive-date = 2016-02-01|archive-url = https://web.archive.org/web/20160201044632/http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Nuclear-Power-Reactors/|dead-url = yes}}</ref>
Reaktor dengan kemampuan pengisian bahan bakar online hingga saat ini biasanya telah didinginkan dengan natrium cair, didinginkan dengan gas, atau didinginkan oleh air dalam saluran bertekanan. Reaktor berpendingin air yang menggunakan bejana bertekanan, misalnya reaktor PWR dan BWR dan turunan Generasi III mereka, tidak cocok untuk pengisian bahan bakar online karena pendingin diturunkan tekanannya untuk memungkinkan pembongkaran bejana tekan dan oleh karena itu memerlukan penghentian reaktor besar-besaran. Ini biasanya dilakukan setiap 18-24 bulan.
Desain pembangkit listrik tenaga nuklir terkenal di masa lalu dan sekarang yang telah menggabungkan kemampuan untuk mengisi bahan bakar secara online meliputi:
* Reaktor CANDU : Reaktor bahan bakar uranium alam berpendingin air berat bertekanan dan dimoderasi, desain Kanada. Dioperasikan tahun 1947–sekarang.
* Reaktor Magnox : Reaktor bahan bakar uranium alami berpendingin CO2, dimoderasi grafit, desain Inggris. Dioperasikan 1954–2015.
* Reaktor RBMK : Reaktor bahan bakar uranium berpendingin air mendidih, dimoderasi grafit, dan diperkaya desain Rusia. Dioperasikan tahun 1954–sekarang.
* Reaktor UNGG : reaktor bahan bakar uranium alam berpendingin CO2, dimoderasi grafit, desain Prancis. Dioperasikan 1966 - 1994.
* BN-350 ; Reaktor BN-600 & BN-800 : Reaktor pembiakan cepat berpendingin natrium desain Rusia. Dioperasikan 1973–sekarang.
* AGR (Advanced gas-cooled) reaktor: reaktor bahan bakar uranium berpendingin CO2, dimoderasi grafit, diperkaya desain Inggris. Dioperasikan 1976–sekarang.
Ada sejumlah desain reaktor yang direncanakan yang mencakup ketentuan untuk pengisian bahan bakar online, termasuk reaktor Generasi IV pebble-bed dan garam cair.
== Generator termoelektrik radioisotop ==
Baris 240 ⟶ 446:
* [[APR-1400]]
* [[Kebocoran nuklir]]
* [[Daftar reaktor nuklir]]
* [[Reaktor nuklir mikro]]
== Referensi ==
Baris 250 ⟶ 458:
[[Kategori:Nuklir]]
[[Kategori:Teknologi nuklir]]
[[Kategori:Sumber neutron]]
[[Kategori:Konversi energi]]
[[Kategori:Reaktor penelitian nuklir]]
[[Kategori:Teknologi pembangkit listrik]]
|