Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
kutipan galat sama saja dengan kutipan yang mempunyai catatan kaki
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20240409)) #IABot (v2.0.9.5) (GreenC bot
 
(Satu revisi perantara oleh satu pengguna lainnya tidak ditampilkan)
Baris 7:
 
== Nama dan kode ==
Simbol ini memiliki banyak pelafalan, contohnya "parsial", "de keriting", "de bulat", "de melengkung", "dabba",<ref>Gokhale, Mujumdar, Kulkarni, Singh, Atal, ''Engineering Mathematics I'', [https://books.google.co.uk/books?id=CbIqX6TxJVMC&pg=SA10-PA2&q=dabba p. 10.2], Nirali Prakashan ISBN 8190693549.</ref> "delta Jacobi",<ref name="Aldrich" /> atau "del"<ref>{{Citation|first=R.S.|last=Bhardwaj|year=2005|title=Mathematics for Economics & Business|edition=2nd|page=6.4|isbn=9788174464507|url=https://books.google.com/books?id=qSlGMwpNueoC&pg=SA6-PA4}}</ref> (walaupun nama ini juga digunakan untuk melafalkan simbol "nabla" [[Del|∇]]). Simbol '''∂''' juga dapat dilafalkan sebagai "de",<ref>{{Citation|first=Richard A.|last=Silverman|year=1989|title=Essential Calculus: With Applications|page=216|isbn=9780486660974|url=https://books.google.com/books?id=CQ-kqE9Yo9YC&pg=PA216}}</ref> "de parsial",<ref>{{Citation|first1=Malcolm|last1=Pemberton|first2=Nicholas|last2=Rau|year=2011|title=Mathematics for Economists: An Introductory Textbook|page=271|isbn=9781442612761|url=https://books.google.com/books?id=H92Z6yfhxk8C&pg=PA271}}</ref><ref>{{cite book|last1=Munem|first1=Mustafa|last2=Foulis|first2=David|date=1978|title=Calculus with Analytic Geometry|url=https://archive.org/details/calculuswithanal0000mune_c1l9|location=New York, NY|publisher=Worth Publishers, Inc.|isbn=0-87901-087-8|page=[https://archive.org/details/calculuswithanal0000mune_c1l9/page/828 828]}}</ref> atau "doh".<ref>{{Citation|first=Elizabeth|last=Bowman|year=2014|title=Video Lecture for University of Alabama in Huntsville|url=https://www.youtube.com/watch?v=I0AVgBgHhUg|archive-url=https://ghostarchive.org/varchive/youtube/20211222/I0AVgBgHhUg|archive-date=2021-12-22|url-status=live}}{{cbignore}}</ref><ref>Karmalkar, S., Department of Electrical Engineering, IIT Madras (2008), {{Citation|title=Lecture-25-PN Junction(Contd)|url=https://www.youtube.com/watch?v=5C57-z6rJO4&list=PLF178600D851B098F|archive-url=https://ghostarchive.org/varchive/youtube/20211222/5C57-z6rJO4|archive-date=2021-12-22|url-status=live|language=en|access-date=2020-04-22}}{{cbignore}}</ref>
 
Karakter Unicode {{Unichar|2202|PARTIAL DIFFERENTIAL}} dapat diakses dengan kode entitas [[HTML]] <code>&#x26;#8706;</code> atau <code>&#x26;part;</code> . Simbol [[LaTeX]] yang ekuivalen '''<math>\partial</math>''' diakses menggunakan perintah<code>\partial</code>.
Baris 20:
* Batas ''∂(S)'' dari himpunan simpul ''S'' di sebuah graf, yang menyatakan himpunan sisi yang meninggalkan ''S'' dan mendefinisikan suatu [[Potongan (teori graf)|potongan]].
== Referensi ==
{{div col|colwidth=30em}}
{{Reflist}}
{{div col end}}
[[Kategori:Istilah matematika]]