Sistem koordinat polar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
Esther Rossini (bicara | kontrib)
Image suggestions feature: 1 image added.
 
(34 revisi perantara oleh 10 pengguna tidak ditampilkan)
Baris 1:
{{short description|Sistem koordinat dua dimensi dimana setiap titik ditentukan oleh jarak dari titik referensi dan sudut dari arah referensi}}
[[Berkas:Examples of Polar Coordinates.svg|thumb|250px|Titik-titik dalam sistem koordinat polar dengan kutub/''pole'' ''O'' dan aksis polar ''L''. Warna hijau: titik dengan koordinat radial 3 dan koordinat angular 60 derajat, atau (3,60°). Warna biru: titik (4,210°).]]
{{more footnotes|date=September 2020}}{{Periksa terjemahan|en|Polar coordinate system}}[[Berkas:Examples of Polar Coordinates.svg|jmpl|250px|Titik-titik dalam sistem koordinat polar dengan kutub/''pole'' ''O'' dan aksis polar ''L''. Warna hijau: titik dengan koordinat radial 3 dan koordinat angular 60 derajat, atau (3,60°). Warna biru: titik (4,210°).]]
'''Sistem koordinat polar''' ('''sistem koordinat kutub''') dalam [[matematika]] adalah suatu [[sistem koordinat]] [[dimensi|2-dimensi]] di mana setiap [[titik (geometri)|titik]] pada [[bidang (geometri)|bidang]] ditentukan dengan [[jarak]] dari suatu titik yang telah ditetapkan dan suatu [[sudut]] dari suatu arah yang telah ditetapkan.
 
Titik yang telah ditetapkan (analog dengan titik origin dalam [[sistem koordinat Kartesius]]) disebut ''pole'' atau "kutub", dan [[:en:ray (geometry)|''ray'' atau "sinar"]] dari kutub pada arah yang telah ditetapkan disebut "aksis polar" (''polar axis''). Jarak dari suatu kutub disebut ''radial coordinate'' atau ''radius'', dan sudutnya disebut ''angular coordinate'', ''polar angle'', atau ''[[azimuth]]''.<ref name="brown">{{Cite book|last = Brown|first = Richard G.|editor = Andrew M. Gleason|year = 1997|title = Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis|url = https://archive.org/details/advancedmathemat00rich_0|publisher = McDougal Littell|location = Evanston, Illinois|isbn = 0-395-77114-5}}</ref>
 
[[Grégoire de Saint-Vincent]] dan [[Bonaventura Cavalieri]] secara independen memperkenalkan konsep-konsep tersebut pada pertengahan abad ketujuh belas, meskipun istilah sebenarnya '' koordinat polar '' telah dikaitkan. Motivasi awal untuk pengenalan sistem polar adalah mempelajari [[gerakan melingkar|melingkar]] dan [[gerakan orbital]].
Hack by : Nicholas kungkingkang
 
Koordinat polar paling tepat dalam konteks apa pun di mana fenomena yang dipertimbangkan secara inheren terikat pada arah dan panjang dari titik pusat pada bidang, seperti [[spiral]]. Sistem fisik planar dengan benda-benda bergerak di sekitar titik pusat, atau fenomena yang berasal dari titik pusat, sering kali lebih sederhana dan lebih intuitif untuk dimodelkan menggunakan koordinat polar.
<ref name="brown">{{Cite book|last = Brown|first = Richard G.|editor = Andrew M. Gleason|year = 1997|title = Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis|publisher = McDougal Littell|location = Evanston, Illinois|isbn = 0-395-77114-5}}</ref>
 
Sistem koordinat polar diperluas menjadi tiga dimensi dengan dua cara: sistem koordinat [[sistem koordinat tabung|tabung]] dan [[sistem koordinat bola|bola]].
 
== Sejarah ==
<!--{{See also|HistorySejarah offungsi trigonometric functionstrigonometri}}-->
Konsep sudut dan jari-jari sudah digunakan oleh manusia sejak zaman purba, paling tidak pada milenium pertama [[SM]]. Astronom dan astrolog [[Yunani]], [[Hipparchus]], (190–120 SM) menciptakan tabel fungsi [[:en:chord (geometry)|chord]] dengan menyatakan panjang chord bagi setiap sudut, dan ada rujukan mengenai penggunaan koordinat polar olehnya untuk menentukan posisi bintang-bintang.<ref name="milestones">{{Cite web| last = Friendly| first = Michael| title = Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization| url = http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html| accessdate = 2006-09-10| archive-date = 2011-03-20| archive-url = https://web.archive.org/web/20110320182116/http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html| dead-url = yes}}</ref>
[[Berkas:Hipparchos 1.jpeg|thumb|190px|Hipparchus]]
Konsep sudut dan jari-jari sudah digunakan oleh manusia sejak zaman purba, paling tidak pada milenium pertama [[SM]]. Astronom dan astrolog [[Yunani]], [[Hipparchus]], (190–120 SM) menciptakan tabel fungsi [[:en:chord (geometry)|chord]] dengan menyatakan panjang chord bagi setiap sudut, dan ada rujukan mengenai penggunaan koordinat polar olehnya untuk menentukan posisi bintang-bintang.<ref name="milestones">{{Cite web| last = Friendly| first = Michael| title = Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization| url = http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html| accessdate = 2006-09-10}}</ref>
Dalam karyanya ''[[On Spirals]]'', [[Archimedes]] menyatakan [[Archimedean spiral]], suatu fungsi yang jari-jarinya tergantung dari sudut. Namun, karya-karya Yunani tidak berkembang sampai ke suatu sistem koordinat sepenuhnya.
 
Baris 33 ⟶ 35:
|year= 2005
|url= http://books.google.com.au/books?id=AMOQZfrZq-EC&pg=PA161#v=onepage&f=false
|ref=harv}}</ref> Sejak abad ke-9 dan seterusnya, mereka menggunakan metode [[trigonometri bola]] dan [[proyeksi peta]] untuk menentukan jumlah ini secara akurat. Perhitungan pada dasarnya adalah konversi [[koordinat Geodetik#Koordinat|koordinat polar ekuator]] Mekkah (yaitu [[bujur]] dan [[lintang]]) ke koordinat kutubnya (yaitu kiblat dan jaraknya) relatif terhadap sistem yang meridian referensinya adalah lingkaran besar melalui lokasi tertentu, dan yang sumbu polarnya adalah garis melalui lokasi dan [[titik antipodal]].<ref>King ([[#CITEREFKing2005|2005]], [http://books.google.com.au/books?id=AMOQZfrZq-EC&pg=PA169#v=onepage&f=false p. 169]). Perhitungannya seakurat yang dapat dicapai di bawah batasan yang diberlakukan oleh asumsi mereka bahwa Bumi adalah bola yang sempurna.</ref>
|ref=harv}}
</ref> <!--From the 9th century onward they were using [[spherical trigonometry]] and [[map projection]] methods to determine these quantities accurately. The calculation is essentially the conversion of the [[Geodetic coordinates#Coordinates|equatorial polar coordinates]] of Mecca (i.e. its [[longitude]] and [[latitude]]) to its polar coordinates (i.e. its qibla and distance) relative to a system whose reference meridian is the great circle through the given location and the Earth's poles, and whose polar axis is the line through the location and its [[antipodal point]].<ref>King ([[#CITEREFKing2005|2005]], [http://books.google.com.au/books?id=AMOQZfrZq-EC&pg=PA169#v=onepage&f=false p. 169]). The calculations were as accurate as could be achieved under the limitations imposed by their assumption that the Earth was a perfect sphere.</ref>
 
ThereAda areberbagai variouspenjelasan accountstentang ofpengenalan the introduction ofkoordinat polar coordinatessebagai asbagian partdari ofsistem akoordinat formal. coordinateSejarah system.lengkap Thedari fullsubjek historyini ofdijelaskan thedalam subjectOrigin isof describedPolar inCoordinates [[HarvardUniversitas UniversityHarvard|Harvard]] professorprofesor [[Julian Lowell Coolidge]]'s ''Origin of Polar Coordinates.''<ref name="coolidge">{{Cite journal| last = Coolidge| first = Julian| authorlink = Julian Lowell Coolidge| title = The Origin of Polar Coordinates| journal = American Mathematical Monthly| volume = 59| pages = 78–85| year = 1952| url = http://www-history.mcs.st-and.ac.uk/Extras/Coolidge_Polars.html| doi = 10.2307/2307104| issue = 2| publisher = Mathematical Association of America| jstor = 2307104}}</ref> [[Grégoire de Saint-Vincent]] anddan [[Bonaventura Cavalieri]] independentlysecara introducedindependen thememperkenalkan conceptskonsep-konsep inpada thepertengahan mid-seventeenthabad ketujuh centurybelas. Saint-Vincent wrotemenulis abouttentang themmereka privatelysecara inpribadi pada tahun 1625 anddan publishedmenerbitkan hiskaryanya workpada intahun 1647, whilesementara Cavalieri publishedmenerbitkan hiskaryanya inpada tahun 1635 withdengan aversi correctedkoreksi versionyang appearingmuncul inpada tahun 1653. Cavalieri firstpertama usedkali polarmenggunakan coordinateskoordinat tokutub solveuntuk amemecahkan problemmasalah relatingyang toberkaitan thedengan arealuas withindi andalam [[Archimedean spiral Archimedean]]. [[Blaise Pascal]] subsequentlykemudian usedmenggunakan koordinat polar coordinatesuntuk tomenghitung calculate the length ofpanjang [[parabola|parabolicbusur arcsparabola]].
 
InDalam '' [[Method of Fluxions]] '' (writtenditulis 1671, publishedditerbitkan 1736), Sir [[Isaac Newton]] examinedmemeriksa thetransformasi transformationsantara betweenkoordinat polar coordinateskutub, whichyang heia referredsebut to as thesebagai "SeventhCara MannerKetujuh; ForUntuk SpiralsSpiral", and nine other coordinate systems.<ref>{{Cite journal| last = Boyer| first = C. B.| title = Newton as an Originator of Polar Coordinates| journal = American Mathematical Monthly| volume = 56| pages = 73–78| year = 1949| doi = 10.2307/2306162| issue = 2| publisher = Mathematical Association of America| jstor = 2306162}}</ref> InDalam the journaljurnal '' [[Acta Eruditorum]] '' (1691), [[Jacob Bernoulli]] usedmenggunakan asistem systemdengan withtitik apada pointgaris, onyang amasing-masing line,disebut called'' thepolar ''pole'' anddan '' sumbu polar axis'' respectively. CoordinatesKoordinat wereditentukan specifiedoleh byjarak thedari distancekutub fromdan thesudut poledari and'' thesumbu angle from the ''polar axis''. Pekerjaan Bernoulli's workdiperluas extendeduntuk to finding themenemukan [[Radius of curvaturekelengkungan (mathematicsmatematika)|radiusjari-jari of curvaturekelengkungan]] of curves expressed in these coordinates.
 
Istilah sebenarnya '' koordinat polar '' telah dikaitkan dengan [[Gregorio Fontana]] dan digunakan oleh penulis Italia abad ke-18. Istilah ini muncul dalam [[Bahasa Inggris|Inggris]] dalam terjemahan [[George Peacock]] tahun 1816 dari terjemahan [[Sylvestre François Lacroix|Lacroix]] ''Diferensial dan Integral Kalkulus''.<ref>{{Cite web| last = Miller| first = Jeff| title = Earliest Known Uses of Some of the Words of Mathematics| url = http://members.aol.com/jeff570/p.html| accessdate = 2006-09-10| archive-date = 2008-07-19| archive-url = https://web.archive.org/web/20080719153037/http://members.aol.com/jeff570/p.html| dead-url = yes}}</ref><ref>{{Cite book| last = Smith| first = David Eugene| title = History of Mathematics, Vol II| publisher = Ginn and Co.| year = 1925| location = Boston| pages = 324}}</ref> [[Alexis Clairaut]] adalah orang pertama yang memikirkan koordinat kutub dalam tiga dimensi, dan [[Leonhard Euler]] adalah orang pertama yang benar-benar mengembangkannya.<ref name="coolidge" />
 
The actual term ''polar coordinates'' has been attributed to [[Gregorio Fontana]] and was used by 18th-century Italian writers. The term appeared in [[English language|English]] in [[George Peacock]]'s 1816 translation of [[Sylvestre François Lacroix|Lacroix]]'s ''Differential and Integral Calculus''.<ref>{{Cite web| last = Miller| first = Jeff| title = Earliest Known Uses of Some of the Words of Mathematics| url = http://members.aol.com/jeff570/p.html| accessdate = 2006-09-10}}</ref><ref>{{Cite book| last = Smith| first = David Eugene| title = History of Mathematics, Vol II| publisher = Ginn and Co.| year = 1925| location = Boston| pages = 324}}</ref> [[Alexis Clairaut]] was the first to think of polar coordinates in three dimensions, and [[Leonhard Euler]] was the first to actually develop them.<ref name="coolidge" />
-->
== Kaidah ==
[[Berkas:Polar graph paper.svg|thumbjmpl|rightka|300px|Sebuah grid polar dengan beberapa sudut yang diberi label dalam derajat.]]
Koordinat radial sering dilambangkan dengan ''r'', dan koordinat angular dilambangkan dengan [[phi|''φ'']], [[theta|''θ'']], atau ''t''. Koordinat angular ditetapkan sebagai ''φ'' oleh standar [[International Organisation for Standardisation|ISO]] [[ISO 31-11|31-11]].
 
Baris 51 ⟶ 52:
 
Dalam literatur matematika, aksis polar sering digambar horizontal dan mengarah ke kanan.
<!--
===Uniqueness of polar coordinates===
Adding any number of full [[turn (geometry)|turn]]s (360°) to the angular coordinate does not change the corresponding direction. Also, a negative radial coordinate is best interpreted as the corresponding positive distance measured in the opposite direction. Therefore, the same point can be expressed with an infinite number of different polar coordinates {{nowrap|(''r'', ''φ'' ± ''n''×360°)}} or {{nowrap|(−''r'', ''φ'' ± (2''n'' + 1)180°)}}, where ''n'' is any [[integer]].<ref>{{Cite web| url = http://www.fortbendisd.com/campuses/documents/Teacher/2006%5Cteacher_20060413_0948.pdf| title = Polar Coordinates and Graphing| accessdate = 2006-09-22| date = 2006-04-13| format = PDF}}</ref> Moreover, the pole itself can be expressed as (0,&nbsp;''φ'') for any angle ''φ''.<ref>{{Cite book|title=Precalculus: With Unit-Circle Trigonometry|last=Lee|first=Theodore|author2=David Cohen |author3=David Sklar |year=2005|publisher=Thomson Brooks/Cole|edition=Fourth|isbn=0-534-40230-5}}</ref>
 
=== Keunikan koordinat polar ===
Where a unique representation is needed for any point, it is usual to limit ''r'' to [[non-negative number]]s ({{nowrap|''r'' ≥ 0}}) and ''φ'' to the [[interval (mathematics)|interval]] [0,&nbsp;360°) or (−180°,&nbsp;180°] (in radians, [0,&nbsp;2π) or (−π,&nbsp;π]).<ref>{{Cite book|title=Complex Analysis (the Hitchhiker's Guide to the Plane)|first=Ian|last=Stewart|author2=David Tall|year=1983|publisher=Cambridge University Press|isbn=0-521-28763-4}}</ref> One must also choose a unique azimuth for the pole, e.g., ''φ''&nbsp;=&nbsp;0.
Menambahkan sejumlah [[putaran (geometri)|putaran]] (360 °) penuh ke koordinat sudut tidak mengubah arah yang sesuai. Juga, koordinat radial negatif paling baik diinterpretasikan sebagai jarak positif terkait yang diukur dalam arah yang berlawanan. Oleh karena itu, titik yang sama dapat diekspresikan dengan koordinat kutub yang berbeda dalam jumlah tak terhingga {{nowrap|(''r'', ''φ'' ± ''n''×360°)}} atau {{nowrap|(−''r'', ''φ'' ± (2''n'' + 1)180°)}}, dimana ''n'' adalah salah satu [[bilangan bulat]].<ref>{{Cite web| url = http://www.fortbendisd.com/campuses/documents/Teacher/2006%5Cteacher_20060413_0948.pdf| title = Polar Coordinates and Graphing| accessdate = 2006-09-22| date = 2006-04-13| format = PDF| archive-date = 2012-02-15| archive-url = https://www.webcitation.org/65Tl0XlQe?url=http://campuses.fortbendisd.com/campuses/documents/Teacher/2006/teacher_20060413_0948.pdf| dead-url = yes}}</ref> Moreover, the pole itself can be expressed as (0,&nbsp;''φ'') for any angle ''φ''.<ref>{{Cite book|title=Precalculus: With Unit-Circle Trigonometry|last=Lee|first=Theodore|author2=David Cohen |author3=David Sklar |year=2005|publisher=Thomson Brooks/Cole|edition=Fourth|isbn=0-534-40230-5}}</ref>
-->
 
Jika representasi unik diperlukan untuk titik mana pun, biasanya membatasi '' r '' menjadi [[bilangan non-negatif]] ({{nowrap|''r'' ≥ 0}}) dan ''φ'' ke [[interval (matematika)|interval]] [0, 360 °) atau (−180°,&nbsp;180°] (dalam radian, [0,&nbsp;2π) atau (−π,&nbsp;π]).<ref>{{Cite book|title=Complex Analysis (the Hitchhiker's Guide to the Plane)|url=https://archive.org/details/complexanalysish0000stew|first=Ian|last=Stewart|author2=David Tall|year=1983|publisher=Cambridge University Press|isbn=0-521-28763-4}}</ref> Seseorang juga harus memilih azimuth unik untuk tiang, misalnya ''φ''&nbsp;=&nbsp;0.
 
== Konversi dari atau ke koordinat Kartesius ==
[[Berkas:Polar to cartesian.svg|rightka|thumbjmpl|250px|Sebuah diagram menggambarkan hubungan antara [[sistem koordinat Kartesius]] dan polar.]]
[[Berkas:Cartesian to polar.gif|rightka|thumbjmpl|251px|Sebuah kurva dalam bidang Kartesian dapat dipetakan ke dalam koordinat polar. Dalam animasi ini, <math>y = \sin (6x) + 2</math> dipetakan kepada <math>r = \sin (6 \varphi) + 2</math>. Klik gambar untuk detail.]]
 
Koordinat polar ''r'' dan ''φ'' dapat dikonversi ke dalam [[sistem koordinat Kartesius]] ''x'' dan ''y'' menggunakan [[fungsi trigonometri]] [[sinus]] dan [[kosinus]]:
Baris 65 ⟶ 66:
:<math>y = r \sin \varphi \,</math>
 
[[Sistem koordinat Kartesius|Koordinat KartesianKartesius]] ''x'' dan ''y'' dapat dikonversi ke dalam koordinat polar ''r'' dan ''φ'' dengan ''r''&nbsp;≥&nbsp;0 dan ''φ'' dalam interval (−π, π] dengan:<ref>{{Cite book|first=Bruce Follett|last=Torrence|author2=Eve Torrence|title=The Student's Introduction to Mathematica|url=https://archive.org/details/studentsintroduc0000torr|year=1999|publisher=Cambridge University Press|isbn=0-521-59461-8}}</ref>
 
:<math>r = \sqrt{x^2 + y^2} \quad</math> (sebagaimana dalam [[teorema Pythagoras]] atau [[EuclideanNorma normEuklides]]), dan
:<math>\varphi = \operatorname{atan2}(y, x) \quad</math>,
di mana [[atan2]] merupakan variasi umum pada fungsi [[arctangent]] yang didefinisikan sebagai
Baris 80 ⟶ 81:
\end{cases}</math>
 
Nilai ''φ'' di atas adalah [[principalnilai valuepokok]] dari fungsi [[bilangan kompleks]] [[:en:argumentargumen (complexanalisis analysiskompleks)|arg]] yang diterapkan pada ''x''+''iy''. Suatu sudut dalam rentang [0, 2π) dapat diperoleh dengan menambahkan 2π pada nilai sudut itu jika nilainya negatif.
 
<!--
== Persamaan kutub dari sebuah kurva ==
==Polar equation of a curve==
ThePersamaan equationyang defining anmenentukan [[algebraickurva curvealjabar]] expressedyang in polardinyatakan coordinatesdalam iskoordinat knownkutub asdikenal asebagai '' persamaan polar equation''. InDalam manybanyak caseskasus, suchpersamaan anseperti equationitu candapat simplydengan bemudah specifiedditentukan bydengan definingmendefinisikan '' r '' as asebagai [[functionFungsi (mathematicsmatematika)|functionfungsi]] ofdari ''φ''. TheKurva resultingyang curvedihasilkan thenkemudian consiststerdiri ofdari pointstitik-titik of the formbentuk (''r''(''φ''),&nbsp;''φ'') anddan candapat bedianggap regarded as thesebagai [[graphgrafik ofsuatu a functionfungsi|graphgrafik]] ofdari the polarfungsi functionkutub ''r''.
 
DifferentBerbagai forms ofbentuk [[symmetrysimetri]] candapat bedisimpulkan deduceddari frompersamaan thefungsi equation of a polar functionkutub '' r ''. IfBila {{nowrap|''r''(−''φ'') {{=}} ''r''(''φ'')}} thekurva curveakan willsimetris be symmetrical about thetentang horizontal (0°/180°) pada ray, ifbila {{nowrap|''r''(π − ''φ'') {{=}} ''r''(''φ'')}} ititu willakan besimetris symmetricterhadap aboutsinar the verticalvertikal (90°/270°) ray, anddan ifbila {{nowrap|''r''(''φ'' − α) {{=}} ''r''(''φ'')}} itmaka willhal beitu akan menjadi [[rotationalsimetri symmetryrotasi|rotationallysimetris symmetricrotasi]] byoleh α [[clockwisesearah jarum jam|counterclockwiseberlawanan arah jarum jam]] aboutdi thesekitar polekutub.
 
BecauseKarena ofsistem thekoordinat circular nature of the polarkutub coordinatebersifat systemmelingkar, manybanyak curveskurva candapat bedijelaskan describeddengan bypersamaan akutub ratheryang simpleagak polar equationsederhana, whereassedangkan theirbentuk CartesianCartesiannya formjauh islebih much more intricaterumit. AmongDi theantara bestyang knownpaling ofterkenal thesedari curveskurva areini theadalah [[RoseMawar (mathematicsmatematika)|polarmawar rosepolar]], [[Archimedean spiral Archimedean]], [[Lemniscate of Bernoulli|lemniscate]], [[limaçon]], anddan [[cardioid]].
 
ForUntuk the circlelingkaran, linegaris, anddan polarmawar rosekutub belowdi bawahnya, itdipahami isbahwa understoodtidak thatada therebatasan are no restrictions on thepada domain anddan range of the curvekurva.
 
===Circle Lingkaran ===
[[ImageGambar:circle r=1.svg|thumb|right|ALingkaran circle withdengan equationpersamaan {{nowrap|''r''(''φ'') {{=}} 1}}]]
ThePersamaan generalumum equationuntuk forlingkaran a circle with adengan centerpusat atdi {{nowrap|(''r''<sub>0</sub>, <math>\gamma</math>)}} anddan radius '' a '' isadalah
:<math>r^2 - 2 r r_0 \cos(\varphi - \gamma) + r_0^2 = a^2.\, </math>
 
Ini dapat disederhanakan dengan berbagai cara, untuk menyesuaikan dengan kasus yang lebih spesifik, seperti persamaan
This can be simplified in various ways, to conform to more specific cases, such as the equation
:<math>r(\varphi)=a \,</math>
foruntuk alingkaran circledengan withpusat adi centerkutub atdan the pole and radiusjari-jari ''a''.<ref name="ping">{{Cite web| first=Johan| last=Claeys| url=http://www.ping.be/~ping1339/polar.htm| title=Polar coordinates| accessdate=2006-05-25| archive-date=2000-03-02| archive-url=https://web.archive.org/web/20000302151535/http://www.ping.be/~ping1339/polar.htm| dead-url=yes}}</ref>
 
WhenKetika {{math|''r''}}<sub>0</sub> = {{math|a}}, oratau whenketika thetitik originasal liesterletak onpada the circlelingkaran, the equationpersamaan becomesmenjadi
:<math>r = 2 a\cos(\varphi - \gamma)</math>.
 
InDalam thekasus general caseumum, the equation can bepersamaan solveddapat fordiselesaikan {{math|''r''}}, givingmemberi
:<math>r = r_0 \cos(\varphi - \gamma) + \sqrt{a^2 - r_0^2 \sin^2(\varphi - \gamma)}</math>,
the solution with a minus sign in front of the square root gives the same curve.
 
===Line Garis ===
[[ImageGambar:Rose 2sin(4theta).svg|thumb|right|AMawar polarkutub rosedengan with equationpersamaan {{nowrap|''r''(''φ'') {{=}} 2 sin 4''φ''}}]]
''Garis radial'' (yang melewati kutub) diwakili oleh persamaan
''Radial'' lines (those running through the pole) are represented by the equation
:<math>\varphi = \gamma \,</math>,
wheredimana ɣ isadalah thesudut angleelevasi ofgaris; elevationmaka of the line;hal thatitu isadalah, {{nowrap|ɣ {{=}} arctan ''m''}} wheredi mana '' m '' is theadalah [[slopekemiringan]] ofgaris thedalam linesistem inkoordinat the Cartesian coordinate systemKartesius. TheGaris non- radial lineyang melintasi that crosses thegaris radial line {{nowrap|''φ'' {{=}} ɣ}} [[perpendiculartegak lurus]]ly at thepada pointtitik (''r<sub>0</sub>'', ɣ) has thememiliki equationpersamaan
:<math>r(\varphi) = {r_0}\sec(\varphi-\gamma). \,</math>
 
OtherwiseDinyatakan statedsebaliknya (''r<sub>0</sub>'', ɣ) isadalah thetitik pointdi inmana whichgaris thesinggung tangentmemotong intersectslingkaran theimajiner imaginary circle of radiusjari-jari ''r<sub>0</sub>''.
 
=== Polar rosemawar ===
[[mawar (matematika)|Polar mawar]] adalah kurva matematika terkenal yang terlihat seperti kelopak bunga, dan dapat diekspresikan sebagai persamaan kutub sederhana,
A [[rose (mathematics)|polar rose]] is a famous mathematical curve that looks like a petaled flower, and that can be expressed as a simple polar equation,
:<math>r(\varphi) = a \cos (k\varphi + \gamma_0)\,</math>
for any constant ɣ<sub>0</sub> (including 0). If ''k'' is an integer, these equations will produce a ''k''-petaled rose if ''k'' is [[even and odd numbers|odd]], or a 2''k''-petaled rose if ''k'' is even. If ''k'' israsional rationaltetapi butbukan notbilangan an integerbulat, abentuk rose-likeseperti shapemawar maydapat formterbentuk buttetapi withdengan overlappingkelopak petalsyang tumpang tindih. NotePerhatikan thatbahwa thesepersamaan equationsini nevertidak definepernah amendefinisikan rosemawar withdengan kelopak 2, 6, 10, 14, etcdll. petals. The [[variableVariabel (mathmatematika)|variablevariabel]] '' a '' represents the length of the petalsmewakili ofpanjang thekelopak rosemawar.
{{-}}
 
=== Spiral Archimedean spiral===
[[FileBerkas:Spiral of Archimedes.svg|thumb|right|OneSatu armlengan of anspiral Archimedean spiral withdengan equationpersamaan {{nowrap|''r''(''φ'') {{=}} ''φ'' / 2π }} foruntuk {{nowrap|0 < ''φ'' < 6π}}]]
The [[Spiral Archimedean spiral]] is a famousadalah spiral thatterkenal wasyang discoveredditemukan byoleh [[Archimedes]], whichyang canjuga alsodapat bedinyatakan expressedsebagai aspersamaan akutub simple polar equationsederhana. It is representedItu bydiwakili theoleh equationpersamaan
:<math>r(\varphi) = a+b\varphi. \,</math>
Changing theMengubah parameter '' a '' will turnakan thememutar spiral, whilesedangkan '' b '' controlsmengontrol thejarak distanceantar between the armslengan, which for ayang givenuntuk spiral istertentu alwaysselalu constantkonstan. TheSpiral Archimedean spiral hasmemiliki twodua armslengan, onesatu foruntuk {{nowrap|''φ'' > 0}} anddan onesatu foruntuk {{nowrap|''φ'' < 0}}. TheKedua twolengan armsterhubung aredengan smoothlymulus connecteddi at the poletiang. TakingMengambil thebayangan mirrorcermin imagedari ofsatu onelengan armmelintasi across thegaris 90°/270° lineakan willmenghasilkan yieldlengan the other armlainnya. ThisKurva curveini isterkenal notablesebagai assalah onesatu ofkurva the first curvespertama, after thesetelah [[conicbagian sectionkerucut]]s, tountuk bedijelaskan describeddalam inrisalah a mathematical treatisematematika, anddan assebagai beingcontoh autama primedari examplekurva ofyang apaling curvebaik thatdidefinisikan is best defined by adengan polarpersamaan equationkutub.
{{-}}
 
===Conic sectionsBagian kerucut ===
[[ImageGambar:Elps-slr.svg|thumb|right|250px|EllipseElips, showingmenunjukkan rektum semi-latus rectum]]
Sebuah [[bagian kerucut]] dengan satu fokus pada kutub dan yang lainnya pada suatu tempat pada sinar 0° (sehingga [[sumbu semi-mayor|sumbu mayor]] kerucut terletak di sepanjang sumbu kutub) diberikan oleh:
A [[conic section]] with one focus on the pole and the other somewhere on the 0° ray (so that the conic's [[semi-major axis|major axis]] lies along the polar axis) is given by:
 
: <math>r = { \ell\over {1 - e \cos \varphi}}</math>
 
wheredi mana '' e '' is theadalah [[eccentricityeksentrisitas (mathematicsmatematika)|eccentricityeksentrisitas]] anddan <math>\ell</math> is theadalah [[rektum semi-latus rectum]] (thejarak perpendiculartegak distancelurus atpada afokus focusdari fromsumbu theutama majorke axis to the curvekurva). IfBila {{nowrap|''e'' > 1}}, thispersamaan equationini defines amendefinisikan [[hyperbolahiperbola]]; ifbila {{nowrap|''e'' {{=}} 1}}, ititu defines amendefinisikan [[parabola]]; anddan ifbila {{nowrap|''e'' < 1}}, ititu defines anmendefinisikan [[ellipseelips]]. The specialKasus casekhusus {{nowrap|''e'' {{=}} 0}} ofhasil theterakhir latterdalam resultslingkaran in a circle of radiusjari-jari <math>\ell</math>.
{{-}}
 
==Intersection ofPerpotongan twodua kurva polar curves==
TheGrafik graphsdua of twofungsi polar functions <math>r=f(\theta)</math> anddan <math>r=g(\theta)</math> havememiliki possiblekemungkinan intersectionspersimpangan indalam 3 caseskasus:
# InDi theasal originbila if the equationspersamaan <math>f(\theta)=0</math> anddan <math>g(\theta)=0</math> have atmasing-masing leastmemiliki onesetidaknya solutionsatu eachsolusi.
# AllSemua the pointspoin <math>[g(\theta_i),\theta_i]</math> wheredimana <math>\theta_i</math> are theadalah solutionssolusi tountuk thepersamaan equationtersebut <math>f(\theta)=g(\theta)</math>.
# AllSemua the pointspoin <math>[g(\theta_i),\theta_i]</math> wheredimana <math>\theta_i</math> are theadalah solutionssolusi tountuk thepersamaan equationtersebut <math>f(\theta+(2k+1)\pi)=-g(\theta)</math> wheredimana <math>k</math> isadalah anbilangan integerbulat.
{{-}}
 
== Bilangan kompleks ==
==Complex numbers==
[[ImageGambar:Imaginarynumber2.svg|thumb|right|265px|AnIlustrasi illustrationbilangan of a complex numberkompleks '' z '' plottedyang ondiplot thepada complexbidang planekompleks]]
[[ImageGambar:Euler's formula.svg|thumb|right|265px|AnIlustrasi illustrationbilangan ofkompleks ayang complexdiplot numberpada plottedbidang onkompleks the complex plane usingmenggunakan [[rumus Euler's formula]]]]
Setiap [[bilangan kompleks]] dapat direpresentasikan sebagai sebuah titik dalam [[bidang kompleks]], dan oleh karena itu dapat diekspresikan dengan menentukan koordinat Kartesius titik tersebut (disebut bentuk persegi panjang atau kartesius) atau koordinat kutub titik (disebut bentuk polar). Bilangan kompleks '' z '' dapat direpresentasikan dalam bentuk persegi panjang sebagai
Every [[complex number]] can be represented as a point in the [[complex plane]], and can therefore be expressed by specifying either the point's Cartesian coordinates (called rectangular or Cartesian form) or the point's polar coordinates (called polar form). The complex number ''z'' can be represented in rectangular form as
: <math>z = x + iy\,</math>
di mana '' i '' adalah [[unit imajiner]], atau dapat juga ditulis dalam bentuk kutub (melalui rumus konversi yang diberikan [[#Konversi antara koordinat kutub dan Kartesius|di atas]]) sebagai
where ''i'' is the [[imaginary unit]], or can alternatively be written in polar form (via the conversion formulae given [[#Converting between polar and Cartesian coordinates|above]]) as
:<math>z = r\cdot(\cos\varphi+i\sin\varphi)</math>
and from there as
: <math>z = re^{i\varphi} \,</math>
di mana '' e '' adalah [[e (konstanta matematika)|bilangan Euler]], yang setara dengan yang ditunjukkan oleh [[rumus Euler]].<ref>{{Cite book| last = Smith| first = Julius O.| title = Mathematics of the Discrete Fourier Transform (DFT)| accessdate = 2006-09-22| year = 2003| publisher = W3K Publishing| isbn = 0-9745607-0-7| chapter = Euler's Identity| chapterurl = http://ccrma-www.stanford.edu/~jos/mdft/Euler_s_Identity.html| archive-date = 2006-09-15| archive-url = https://web.archive.org/web/20060915004724/http://ccrma-www.stanford.edu/~jos/mdft/Euler_s_Identity.html| dead-url = yes}}</ref> (Perhatikan bahwa rumus ini, seperti semua rumus yang melibatkan sudut eksponensial, mengasumsikan bahwa sudut '' φ '' dinyatakan dalam [[radian]].) Untuk mengonversi antara bentuk persegi panjang dan kutub dari sebuah bilangan kompleks, rumus konversi yang diberikan [[#Mengubah koordinat polar dan Kartesius|di atas]] dapat digunakan.
where ''e'' is [[e (mathematical constant)|Euler's number]], which are equivalent as shown by [[Euler's formula]].<ref>
{{Cite book| last = Smith| first = Julius O.| title = Mathematics of the Discrete Fourier Transform (DFT)| accessdate = 2006-09-22| year = 2003| publisher = W3K Publishing| isbn = 0-9745607-0-7| chapter = Euler's Identity| chapterurl = http://ccrma-www.stanford.edu/~jos/mdft/Euler_s_Identity.html}}</ref> (Note that this formula, like all those involving exponentials of angles, assumes that the angle ''φ'' is expressed in [[radian]]s.) To convert between the rectangular and polar forms of a complex number, the conversion formulae given [[#Converting between polar and Cartesian coordinates|above]] can be used.
 
Untuk operasi [[perkalian]], [[pembagian (matematika)|pembagian]], dan [[eksponen]] bilangan kompleks, it umumnya jauh lebih sederhana untuk bekerja dengan bilangan kompleks yang diekspresikan dalam bentuk kutub daripada persegi panjang. Dari hukum eksponen:
For the operations of [[multiplication]], [[division (mathematics)|division]], and [[exponentiation]] of complex numbers, it is generally much simpler to work with complex numbers expressed in polar form rather than rectangular form. From the laws of exponentiation:
 
*Perkalian:
*Multiplication:
:: <math>r_0 e^{i\varphi_0} \cdot r_1 e^{i\varphi_1}=r_0 r_1 e^{i(\varphi_0 + \varphi_1)} \,</math>
*Divisi:
*Division:
:: <math>\frac{r_0 e^{i\varphi_0}}{r_1 e^{i\varphi_1}}=\frac{r_0}{r_1}e^{i(\varphi_0 - \varphi_1)} \,</math>
*ExponentiationEksponensial ([[rumus De Moivre's formula]]):
:: <math>(re^{i\varphi})^n=r^ne^{in\varphi} \,</math>
 
==Calculus Kalkulus ==
[[CalculusKalkulus]] candapat bediterapkan appliedpada topersamaan equationsyang expresseddinyatakan indalam koordinat polar coordinates.<ref>{{Cite web|url=http://archives.math.utk.edu/visual.calculus/5/polar.1/index.html|title=Areas Bounded by Polar Curves|author=Husch, Lawrence S.|accessdate=2006-11-25|archive-date=2000-03-01|archive-url=https://web.archive.org/web/20000301151724/http://archives.math.utk.edu/visual.calculus/5/polar.1/index.html|dead-url=yes}}</ref><ref>{{Cite web|url=http://archives.math.utk.edu/visual.calculus/3/polar.1/index.html|title=Tangent Lines to Polar Graphs|author=Lawrence S. Husch|accessdate=2006-11-25|archive-date=2019-11-21|archive-url=https://web.archive.org/web/20191121222301/http://archives.math.utk.edu/visual.calculus/3/polar.1/index.html|dead-url=yes}}</ref>
 
Koordinat sudut '' φ '' dinyatakan dalam radian di sepanjang bagian ini, yang merupakan pilihan konvensional saat mengerjakan kalkulus.
The angular coordinate ''φ'' is expressed in radians throughout this section, which is the conventional choice when doing calculus.
 
=== Kalkulus diferensial ===
===Differential calculus===
UsingMenggunakan {{nowrap|''x'' {{=}} ''r'' cos ''φ'' }} anddan {{nowrap|''y'' {{=}} ''r'' sin ''φ'' }}, oneseseorang candapat derivememperoleh ahubungan relationshipantara betweenturunan derivatives indi Cartesian anddan polarkoordinat coordinateskutub. ForUntuk afungsi given functiontertentu, ''u''(''x'',''y''), itMaka follows thatitu (bydengan computing itsmenghitung [[turunan total derivative]]s)
:<math>r \frac{\partial u}{\partial r} = r \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + r \frac{\partial u}{\partial y}\frac{\partial y}{\partial r},</math>
:<math>\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \varphi} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \varphi},</math>
atau
or
:<math>r \frac{\partial u}{\partial r} = r \frac{\partial u}{\partial x} \cos \varphi + r \frac{\partial u}{\partial y} \sin \varphi = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y},</math>
:<math>\frac{\partial u}{\partial \varphi} = - \frac{\partial u}{\partial x} r \sin \varphi + \frac{\partial u}{\partial y} r \cos \varphi = -y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y}.</math>
 
Karenanya, kami memiliki rumus berikut:
Hence, we have the following formulae:
 
:<math>r \frac{\partial}{\partial r}= x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \,</math>
:<math>\frac{\partial}{\partial \varphi} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} .</math>
 
Menggunakan transformasi koordinat terbalik, hubungan timbal balik analog dapat diturunkan antara turunannya. Diberikan fungsi ''u''(''r'',''φ''), maka hal ini mengikuti
Using the inverse coordinates transformation, an analogous reciprocal relationship can be derived between the derivatives. Given a function ''u''(''r'',''φ''), it follows that
:<math>\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial x},</math>
:<math>\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r}\frac{\partial r}{\partial y} + \frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y},</math>
atau
or
:<math>\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r}\frac{x}{\sqrt{x^2+y^2}} - \frac{\partial u}{\partial \varphi}\frac{y}{x^2+y^2} = \cos \varphi \frac{\partial u}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial u}{\partial \varphi},</math>
:<math>\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r}\frac{y}{\sqrt{x^2+y^2}} + \frac{\partial u}{\partial \varphi}\frac{x}{x^2+y^2} = \sin \varphi \frac{\partial u}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial u}{\partial \varphi}.</math>
 
Karenanya, kami memiliki rumus berikut:
Hence, we have the following formulae:
:<math>\frac{\partial}{\partial x} = \cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \,</math>
:<math>\frac{\partial}{\partial y} = \sin \varphi \frac{\partial}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}.</math>
 
ToUntuk findmencari thekemiringan Cartesian slopedari ofgaris thesinggung tangentke line to akurva polar curve ''r''(''φ'') atpada anytitik given pointtertentu, the curve is firstkurva expressedpertama askali adinyatakan systemsebagai ofsistem [[parametricpersamaan equationsparametrik]].
:<math>x=r(\varphi)\cos\varphi \,</math>
:<math>y=r(\varphi)\sin\varphi \,</math>
 
[[Turunan|Diferensiasi]] kedua persamaan sehubungan dengan hasil '' φ ''
[[Derivative|Differentiating]] both equations with respect to ''φ'' yields
:<math>\frac{dx}{d\varphi}=r'(\varphi)\cos\varphi-r(\varphi)\sin\varphi \,</math>
:<math>\frac{dy}{d\varphi}=r'(\varphi)\sin\varphi+r(\varphi)\cos\varphi. \,</math>
 
DividingMembagi thepersamaan secondkedua equationdengan bypersamaan thepertama firstmenghasilkan yieldskemiringan theKartesius Cartesiandari slopegaris ofsinggung theke tangentkurva linepada totitik the curve at the pointtersebut. {{nowrap|(''r''(''φ''),&nbsp;''φ'')}}:
:<math>\frac{dy}{dx}=\frac{r'(\varphi)\sin\varphi+r(\varphi)\cos\varphi}{r'(\varphi)\cos\varphi-r(\varphi)\sin\varphi}.</math>
 
ForUntuk otherrumus usefulberguna formulaslainnya includingtermasuk divergencedivergensi, gradientgradien, anddan Laplacian indalam polarkoordinat coordinatespolar, seelihat [[curvilinearkoordinat coordinateslengkung]].
 
===Integral calculusKalkulus integral (arcpanjang lengthbusur) ===
ThePanjang arc lengthbusur (lengthpanjang ofsegmen a line segmentgaris) defined by ayang polarditentukan functionoleh isfungsi foundkutub byditentukan theoleh integrationintegrasi overdi theatas curvekurva ''r''(''φ''). LetContohnya '' L '' denotemenunjukkan thispanjang lengthini alongsepanjang thekurva curvemulai startingdari from pointstitik '' A '' throughhingga to pointtitik '' B '', wheredi mana thesetitik-titik pointsini correspondsesuai todengan ''φ'' = ''a'' anddan ''φ'' = ''b'' suchseperti thatyang {{nowrap|0 < ''b'' − ''a'' < 2π}}. The length ofPanjang '' L '' isdiberikan givenoleh byintegral the following integralberikut
 
:<math>L = \int_a^b \sqrt{ \left[r(\varphi)\right]^2 + \left[ {\tfrac{dr(\varphi) }{ d\varphi }} \right] ^2 } d\varphi</math>
<!--
 
===Integral calculusKalkulus integral (arealuas) ===
[[ImageGambar:Polar coordinates integration region.svg|thumb|The integration region ''R'' is bounded by the curve ''r''(''φ'') and the rays ''φ'' = ''a'' and ''φ'' = ''b''.]]
Let ''R'' denote the region enclosed by a curve ''r''(''φ'') and the rays ''φ'' = ''a'' and ''φ'' = ''b'', where {{nowrap|0 < ''b'' − ''a'' ≤ 2π}}. Then, the area of ''R'' is
 
:<math>\frac12\int_a^b \left[r(\varphi)\right]^2\, d\varphi.</math>
 
[[ImageBerkas:Polar coordinates integration Riemann sum.svg|thumb|The region ''R'' is approximated by ''n'' sectors (here, ''n'' = 5).]]
[[FileBerkas:Planimeter.jpg|thumb|A [[planimeter]], which mechanically computes polar integrals]]
This result can be found as follows. First, the interval {{nowrap|[''a'', ''b'']}} is divided into ''n'' subintervals, where ''n'' is an arbitrary positive integer. Thus Δ''φ'', the length of each subinterval, is equal to {{nowrap|''b'' − ''a''}} (the total length of the interval), divided by ''n'', the number of subintervals. For each subinterval ''i'' = 1, 2, …, ''n'', let ''φ''<sub>''i''</sub> be the midpoint of the subinterval, and construct a [[circular sector|sector]] with the center at the pole, radius ''r''(''φ''<sub>''i''</sub>), central angle Δ''φ'' and arc length ''r''(''φ''<sub>''i''</sub>)Δ''φ''. The area of each constructed sector is therefore equal to
:<math>\left[r(\varphi_i)\right]^2 \pi \cdot \frac{\Delta \varphi}{2\pi} = \frac{1}{2}\left[r(\varphi_i)\right]^2 \Delta \varphi.</math>
Baris 230:
A mechanical device that computes area integrals is the [[planimeter]], which measures the area of plane figures by tracing them out: this replicates integration in polar coordinates by adding a joint so that the 2-element [[Linkage (mechanical)|linkage]] effects [[Green's theorem]], converting the quadratic polar integral to a linear integral.
 
==== Generalization ====
Using [[Cartesian coordinates]], an infinitesimal area element can be calculated as ''dA'' = ''dx'' ''dy''. The [[integration by substitution#Substitution for multiple variables|substitution rule for multiple integrals]] states that, when using other coordinates, the [[Jacobian matrix and determinant|Jacobian]] determinant of the coordinate conversion formula has to be considered:
: <math>J = \det\frac{\partial(x,y)}{\partial(r,\varphi)}
Baris 253:
:<math> \int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt\pi.</math>
 
=== Vector calculus ===
[[Vector calculus]] can also be applied to polar coordinates. For a planar motion, let <math>\mathbf{r}</math> be the position vector {{nowrap|(''r''cos(''φ''), ''r''sin(''φ''))}}, with ''r'' and ''φ'' depending on time ''t''.
 
Baris 259:
:<math>\hat{\mathbf{r}}=(\cos(\varphi),\sin(\varphi))</math>
in the direction of '''r''' and
:<math>\hat{\boldsymbol\varphi}=(-\sin(\varphi),\cos(\varphi)) = \hat {\mathbf{k}} \times \hat {\mathbf{r}} \ , </math>
in the plane of the motion perpendicular to the radial direction, where <math>\hat{\mathbf {k}}</math> is a unit vector normal to the plane of the motion.
 
Then
 
:<math> \mathbf{r} = (x, \ y ) = r (\cos \varphi ,\ \sin \varphi) = r \hat{\mathbf{r}}\ , </math>
 
:<math> \dot {\mathbf r} = (\dot x, \ \dot y ) = \dot r (\cos \varphi ,\ \sin \varphi) + r \dot \varphi (-\sin \varphi ,\ \cos \varphi) = \dot r \hat {\mathbf r} + r \dot \varphi \hat {\boldsymbol{\varphi}} \ , </math>
 
:<math> \ddot {\mathbf r } = (\ddot x, \ \ddot y ) = \ddot r (\cos \varphi ,\ \sin \varphi) + 2\dot r \dot \varphi (-\sin \varphi ,\ \cos \varphi) + r\ddot \varphi (-\sin \varphi ,\ \cos \varphi) - r {\dot \varphi }^2 (\cos \varphi ,\ \sin \varphi)\ = </math>
::<math> \left( \ddot r - r\dot\varphi^2 \right) \hat{\mathbf r} + \left( r\ddot\varphi + 2\dot r \dot\varphi \right) \hat{\boldsymbol{\varphi}} \ = (\ddot r - r\dot\varphi^2)\hat{\mathbf{r}} + \frac{1}{r}\; \frac{d}{dt} \left(r^2\dot\varphi\right) \hat{\boldsymbol{\varphi}}</math>
 
==== Centrifugal and Coriolis terms ====
{{See also|Mechanics of planar particle motion|Centrifugal force (rotating reference frame)}}
The term <math>r\dot\varphi^2</math> is sometimes referred to as the ''centrifugal term'', and the term <math>2\dot r \dot\varphi</math> as the ''Coriolis term''. For example, see Shankar.<ref name=Shankar>{{Cite book|title=Principles of Quantum Mechanics|author=Ramamurti Shankar|edition=2nd|page=81|url=http://books.google.com/?id=2zypV5EbKuIC&pg=PA81&dq=Coriolis+%22polar+coordinates%22|year=1994|isbn=0-306-44790-8|publisher=Springer}}</ref> Although these equations bear some resemblance in form to the [[centrifugal force|centrifugal]] and [[Coriolis effect]]s found in rotating reference frames, nonetheless these are not the same things.<ref name=angular>In particular, the angular rate appearing in the polar coordinate expressions is that of the particle under observation, <math>\dot{\varphi}</math>, while that in classical Newtonian mechanics is the angular rate Ω of a rotating frame of reference.</ref> For example, the physical centrifugal and Coriolis forces appear only in [[non-inertial frame]]s of reference. In contrast, these terms that appear when acceleration is expressed in polar coordinates are a mathematical consequence of differentiation; these terms appear wherever polar coordinates are used. In particular, these terms appear even when polar coordinates are used in [[inertial frame]]s of reference, where the physical centrifugal and Coriolis forces never appear.
 
[[ImageBerkas:Co-rotating frame vector.svg|thumb|Inertial frame of reference ''S'' and instantaneous non-inertial co-rotating frame of reference ''S′''. The co-rotating frame rotates at angular rate &Omega;Ω equal to the rate of rotation of the particle about the origin of ''S′'' at the particular moment ''t''. Particle is located at vector position '''r'''(''t'') and unit vectors are shown in the radial direction to the particle from the origin, and also in the direction of increasing angle ''φ'' normal to the radial direction. These unit vectors need not be related to the tangent and normal to the path. Also, the radial distance ''r'' need not be related to the radius of curvature of the path.]]
 
===== ''Co-rotating frame'' =====
For a particle in planar motion, one approach to attaching physical significance to these terms is based on the concept of an instantaneous ''co-rotating frame of reference''.<ref name=Taylor>For the following discussion, see {{Cite book|author=John R Taylor|title=Classical Mechanics|url=https://archive.org/details/classicalmechani0000tayl|page=§&nbsp;9.10, pp. 358–359|isbn=1-891389-22-X|publisher=University Science Books|year=2005}}</ref> To define a co-rotating frame, first an origin is selected from which the distance ''r''(''t'') to the particle is defined. An axis of rotation is set up that is perpendicular to the plane of motion of the particle, and passing through this origin. Then, at the selected moment ''t'', the rate of rotation of the co-rotating frame Ω is made to match the rate of rotation of the particle about this axis, ''dφ''/''dt''. Next, the terms in the acceleration in the inertial frame are related to those in the co-rotating frame. Let the location of the particle in the inertial frame be (''r(''t''), ''φ''(''t'')), and in the co-rotating frame be (''r(t), ''φ''′(t)''). Because the co-rotating frame rotates at the same rate as the particle, ''dφ''′/''dt'' = 0. The fictitious centrifugal force in the co-rotating frame is ''mrΩ<sup>2</sup>, radially outward. The velocity of the particle in the co-rotating frame also is radially outward, because ''dφ''′/''dt'' = 0. The ''fictitious Coriolis force'' therefore has a value −2''m''(''dr''/''dt'')Ω, pointed in the direction of increasing ''φ'' only. Thus, using these forces in Newton's second law we find:
:<math>\boldsymbol{F} + \boldsymbol{F_{cf}} + \boldsymbol{F_{Cor}} = m \ddot{\boldsymbol{r}} \ , </math>
where over dots represent time differentiations, and '''F''' is the net real force (as opposed to the fictitious forces). In terms of components, this vector equation becomes:
:<math>F_r + mr\Omega^2 = m\ddot r</math>
:<math>F_{\varphi}-2m\dot r \Omega = mr \ddot {\varphi} \ , </math>
which can be compared to the equations for the inertial frame:
:<math>F_r = m \ddot r -mr \dot {\varphi}^2 \ </math>
:<math>F_{\varphi} = mr \ddot \varphi +2m \dot r \dot {\varphi} \ . </math>
This comparison, plus the recognition that by the definition of the co-rotating frame at time ''t'' it has a rate of rotation Ω = ''dφ''/''dt'', shows that we can interpret the terms in the acceleration (multiplied by the mass of the particle) as found in the inertial frame as the negative of the centrifugal and Coriolis forces that would be seen in the instantaneous, non-inertial co-rotating frame.
 
For general motion of a particle (as opposed to simple circular motion), the centrifugal and Coriolis forces in a particle's frame of reference commonly are referred to the instantaneous [[osculating circle]] of its motion, not to a fixed center of polar coordinates. For more detail, see [[Centripetal force#Local coordinates|centripetal force]].-->
 
== Koneksi ke koordinat bola dan tabung ==
==Connection to spherical and cylindrical coordinates==
Sistem koordinat kutub diperluas menjadi tiga dimensi dengan dua sistem koordinat yang berbeda, [[sistem koordinat tabung|tabung]] dan [[sistem koordinat bola]].
The polar coordinate system is extended into three dimensions with two different coordinate systems, the [[cylindrical coordinate system|cylindrical]] and [[spherical coordinate system]].
 
== Aplikasi ==
[[Berkas:Bosch 36W column loudspeaker polar pattern.png|jmpl|Pola kutub loudspeaker kolom Bosch 36W, adalah Sistem koordinat polar]]
Polar coordinates are two-dimensional and thus they can be used only where point positions lie on a single two-dimensional plane. They are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point. For instance, the examples above show how elementary polar equations suffice to define curves—such as the Archimedean spiral—whose equation in the Cartesian coordinate system would be much more intricate. Moreover, many physical systems—such as those concerned with bodies moving around a central point or with phenomena originating from a central point—are simpler and more intuitive to model using polar coordinates. The initial motivation for the introduction of the polar system was the study of [[circular motion|circular]] and [[orbital motion]].
Koordinat polar adalah dua dimensi dan karenanya hanya dapat digunakan jika posisi titik terletak pada bidang dua dimensi tunggal. Mereka paling sesuai dalam konteks apa pun di mana fenomena yang sedang dipertimbangkan secara inheren terkait dengan arah dan panjang dari titik pusat. Contohnya, Contoh di atas menunjukkan bagaimana persamaan kutub elementer cukup untuk mendefinisikan kurva, seperti spiral Archimedean yang persamaannya dalam sistem koordinat Cartesian akan jauh lebih rumit. Selain itu, banyak sistem fisik — seperti yang berkaitan dengan benda yang bergerak di sekitar titik pusat atau dengan fenomena yang berasal dari titik pusat lebih sederhana dan lebih intuitif untuk dimodelkan menggunakan polat. Motivasi awal untuk pengenalan sistem kutub adalah mempelajari [[gerakan melingkar|melingkar]] dan [[gerakan orbital]].
 
=== Posisi dan navigasi ===
PolarKoordinat coordinateskutub aresering useddigunakan often indalam [[navigationnavigasi]], askarena thetujuan destinationatau orarah directionperjalanan ofdapat traveldiberikan cansebagai besudut givendan asjarak andari angleobjek andyang distance from the object being considereddipertimbangkan. For instanceContohnya, [[aircraftpesawat]] usemenggunakan aversi slightlyyang modifiedsedikit versiondimodifikasi ofdari thekoordinat polar coordinatesuntuk for navigationnavigasi. InDalam thissistem systemini, theyang oneumumnya generallydigunakan useduntuk forsegala anyjenis sort of navigationnavigasi, thesinar 0 ° rayumumnya is generally calleddisebut heading 360, anddan thesudutnya anglesberlanjut continueke in aarah [[clockwisesearah jarum jam]] direction, ratherbukan berlawanan arah thanjarum counterclockwisejam, asseperti indalam thesistem mathematical systemmatematika. HeadingJudul 360 correspondsberkaitan todengan [[magneticmagnet northutara]], whilesedangkan headingsjudul 90, 180, anddan 270 correspondmasing-masing toterkait magneticdengan east,magnet southtimur, and westselatan, respectivelydan barat.<ref>{{Cite web|url=http://www.thaitechnics.com/nav/adf.html|title=Aircraft Navigation System|accessdate=2006-11-26|first=Sumrit|last=Santhi}}</ref> ThusDengan demikian, ansebuah pesawat terbang aircraftyang travelingmenempuh 5 nauticalmil mileslaut dueke eastarah willtimur beakan travelingmenempuh 5 unitsunit atpada headingpos 90 (readbaca [[ICAOAlfabet spellingejaan alphabetICAO|zeronol-niner-zeronol]] byoleh [[airkontrol lalu trafficlintas controludara]]).<ref>{{Cite web|url=http://www.faa.gov/library/manuals/aircraft/airplane_handbook/media/faa-h-8083-3a-7of7.pdf|title=Emergency Procedures|format=PDF|accessdate=2007-01-15}}</ref>
 
===Modeling Pemodelan ===
Sistem yang menampilkan [[simetri radial]] memberikan pengaturan alami untuk sistem koordinat kutub, dengan titik pusat bertindak sebagai kutub. Contoh utama dari penggunaan ini adalah [[persamaan aliran air tanah]]. Sistem dengan [[gaya pusat|gaya radial]] juga merupakan kandidat yang baik untuk penggunaan sistem koordinat polar. Sistem ini mencakup [[gravitasi|medan gravitasi]], yang mematuhi [[hukum kuadrat terbalik]], serta sistem dengan [[sumber titik]], seperti [[antena (radio)|antena radio]].
Systems displaying [[radial symmetry]] provide natural settings for the polar coordinate system, with the central point acting as the pole. A prime example of this usage is the [[groundwater flow equation]] when applied to radially symmetric wells. Systems with a [[central force|radial force]] are also good candidates for the use of the polar coordinate system. These systems include [[gravitation|gravitational fields]], which obey the [[inverse-square law]], as well as systems with [[point source]]s, such as [[antenna (radio)|radio antennas]].
 
Sistem asimetris radial juga dapat dimodelkan dengan koordinat polar. Contohnya, [[Mikrofon#Pola kutub mikrofon|pola pengambilan]] [[mikrofon]] mengilustrasikan respons proporsionalnya terhadap suara yang masuk dari arah tertentu, dan pola ini dapat diulang. Kurva untuk mikrofon cardioid standar, mikrofon searah yang paling umum, dapat direpresentasikan sebagai {{nowrap|''r'' {{=}} 0.5 + 0.5sin(''φ'')}} pada frekuensi desain targetnya.<ref>{{Cite book|last=Eargle|first=John|authorlink=John M. Eargle|title=Handbook of Recording Engineering|year=2005|edition=Fourth|publisher=Springer|isbn = 0-387-28470-2}}</ref> Pola bergeser ke arah omnidirectionality pada frekuensi yang lebih rendah.
 
Radially asymmetric systems may also be modeled with polar coordinates. For example, a [[microphone]]'s [[Microphone#Microphone polar patterns|pickup pattern]] illustrates its proportional response to an incoming sound from a given direction, and these patterns can be represented as polar curves. The curve for a standard cardioid microphone, the most common unidirectional microphone, can be represented as {{nowrap|''r'' {{=}} 0.5 + 0.5sin(''φ'')}} at its target design frequency.<ref>{{Cite book|last=Eargle|first=John|authorlink=John M. Eargle|title=Handbook of Recording Engineering|year=2005|edition=Fourth|publisher=Springer|isbn = 0-387-28470-2}}</ref> The pattern shifts toward omnidirectionality at lower frequencies.
-->
== Lihat pula ==
{{Portal|Matematika}}
* [[Koordinat kurvilinear]]
*[[Koordinat lengkung]]
* [[Daftar transformasi koordinat]]
*[[Daftar transformasi koordinat kanonik]]
* [[Koordinat log-polar]]
*[[Koordinat polar]]
*[[Dekomposisi polar]]
*[[Lingkaran satauan]]
*[[Koordinat kurvilinear]]
*[[Daftar transformasi koordinat]]
*[[Koordinat log-polar]]
 
== Referensi ==
'''Spesifik'''
<div class="references-small">
{{Reflist|30em}}
;General
 
* {{Cite book|last=Adams|first=Robert|author2=Christopher Essex|title=Calculus: a complete course|edition=Eighth|year=2013|publisher=Pearson Canada Inc.|isbn=978-0-321-78107-9}}
'''Umum'''
* {{Cite book|last=Anton|first=Howard|author2=Irl Bivens|author3=Stephen Davis|title=Calculus|edition=Seventh|year=2002|publisher=Anton Textbooks, Inc.|isbn=0-471-38157-8}}
{{refbegin}}
* {{Cite book|last=Finney|first=Ross|author2=George Thomas|author3=Franklin Demana|author4=Bert Waits|title=Calculus: Graphical, Numerical, Algebraic|edition=Single Variable Version|date=June 1994|publisher=Addison-Wesley Publishing Co.|isbn=0-201-55478-X}}
*{{Cite book|last=Adams|first=Robert|author2=Christopher Essex|title=Calculus: a complete course|url=https://archive.org/details/calculuscomplete0000adam_c1q6|edition=Eighth|year=2013|publisher=Pearson Canada Inc.|isbn=978-0-321-78107-9}}
;Specific
*{{Cite book|last=Anton|first=Howard|author2=Irl Bivens |author3=Stephen Davis |title=Calculus|url=https://archive.org/details/calculus0000anto_n5e7|edition=Seventh|year=2002|publisher=Anton Textbooks, Inc.|isbn=0-471-38157-8}}
</div>
*{{Cite book|last=Finney|first=Ross|author2=George Thomas|author3=Franklin Demana|author4=Bert Waits|title=Calculus: Graphical, Numerical, Algebraic|edition=Single Variable Version|date=June 1994|publisher=Addison-Wesley Publishing Co.|isbn=0-201-55478-X|url=https://archive.org/details/calculusgraphica00ross}}
{{Reflist|2}}
{{refend}}
 
== Pranala luar ==
{{Wikibooks|Kalkulus|Integrasi Polar}}
{{wikibooks|Calculus|Polar Integration}}
* {{springer|title=Polar coordinates|id=p/p073410}}
* {{dmoz|Science/Math/Software/Graphing/|Graphing Software}}
* [http://www.random-science-tools.com/maths/coordinate-converter.htm Coordinate Converter &mdash; converts between polar, Cartesian and spherical coordinates]
* [http://scratch.mit.edu/projects/nevit/691690 Polar Coordinate System Dynamic Demo]
 
{{Sistem koordinat ortogonal}}
{{Orthogonal coordinate systems}}
 
{{DEFAULTSORT:Sistem koordinatKoordinat polarPolar}}
[[Kategori:Sistem koordinat dua dimensi]]
[[Kategori:MatematikaSistem koordinat ortogonal]]