Sistem koordinat polar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k clean up
Esther Rossini (bicara | kontrib)
Image suggestions feature: 1 image added.
 
(2 revisi perantara oleh 2 pengguna tidak ditampilkan)
Baris 13:
== Sejarah ==
{{See also|Sejarah fungsi trigonometri}}
[[Berkas:Hipparchos 1.jpeg|jmpl|190px|Hipparchus]]
Konsep sudut dan jari-jari sudah digunakan oleh manusia sejak zaman purba, paling tidak pada milenium pertama [[SM]]. Astronom dan astrolog [[Yunani]], [[Hipparchus]], (190–120 SM) menciptakan tabel fungsi [[:en:chord (geometry)|chord]] dengan menyatakan panjang chord bagi setiap sudut, dan ada rujukan mengenai penggunaan koordinat polar olehnya untuk menentukan posisi bintang-bintang.<ref name="milestones">{{Cite web| last = Friendly| first = Michael| title = Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization| url = http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html| accessdate = 2006-09-10| archive-date = 2011-03-20| archive-url = https://web.archive.org/web/20110320182116/http://www.math.yorku.ca/SCS/Gallery/milestone/sec4.html| dead-url = yes}}</ref>
Dalam karyanya ''[[On Spirals]]'', [[Archimedes]] menyatakan [[Archimedean spiral]], suatu fungsi yang jari-jarinya tergantung dari sudut. Namun, karya-karya Yunani tidak berkembang sampai ke suatu sistem koordinat sepenuhnya.
Baris 279 ⟶ 278:
 
===== ''Co-rotating frame'' =====
For a particle in planar motion, one approach to attaching physical significance to these terms is based on the concept of an instantaneous ''co-rotating frame of reference''.<ref name=Taylor>For the following discussion, see {{Cite book|author=John R Taylor|title=Classical Mechanics|url=https://archive.org/details/classicalmechani0000tayl|page=§&nbsp;9.10, pp. 358–359|isbn=1-891389-22-X|publisher=University Science Books|year=2005}}</ref> To define a co-rotating frame, first an origin is selected from which the distance ''r''(''t'') to the particle is defined. An axis of rotation is set up that is perpendicular to the plane of motion of the particle, and passing through this origin. Then, at the selected moment ''t'', the rate of rotation of the co-rotating frame Ω is made to match the rate of rotation of the particle about this axis, ''dφ''/''dt''. Next, the terms in the acceleration in the inertial frame are related to those in the co-rotating frame. Let the location of the particle in the inertial frame be (''r(''t''), ''φ''(''t'')), and in the co-rotating frame be (''r(t), ''φ''′(t)''). Because the co-rotating frame rotates at the same rate as the particle, ''dφ''′/''dt'' = 0. The fictitious centrifugal force in the co-rotating frame is ''mrΩ<sup>2</sup>, radially outward. The velocity of the particle in the co-rotating frame also is radially outward, because ''dφ''′/''dt'' = 0. The ''fictitious Coriolis force'' therefore has a value −2''m''(''dr''/''dt'')Ω, pointed in the direction of increasing ''φ'' only. Thus, using these forces in Newton's second law we find:
:<math>\boldsymbol{F} + \boldsymbol{F_{cf}} + \boldsymbol{F_{Cor}} = m \ddot{\boldsymbol{r}} \, </math>
where over dots represent time differentiations, and '''F''' is the net real force (as opposed to the fictitious forces). In terms of components, this vector equation becomes:
Baris 295 ⟶ 294:
 
== Aplikasi ==
[[Berkas:Bosch 36W column loudspeaker polar pattern.png|jmpl|Pola kutub loudspeaker kolom Bosch 36W, adalah Sistem koordinat polar]]
Koordinat polar adalah dua dimensi dan karenanya hanya dapat digunakan jika posisi titik terletak pada bidang dua dimensi tunggal. Mereka paling sesuai dalam konteks apa pun di mana fenomena yang sedang dipertimbangkan secara inheren terkait dengan arah dan panjang dari titik pusat. Contohnya, Contoh di atas menunjukkan bagaimana persamaan kutub elementer cukup untuk mendefinisikan kurva, seperti spiral Archimedean yang persamaannya dalam sistem koordinat Cartesian akan jauh lebih rumit. Selain itu, banyak sistem fisik — seperti yang berkaitan dengan benda yang bergerak di sekitar titik pusat atau dengan fenomena yang berasal dari titik pusat lebih sederhana dan lebih intuitif untuk dimodelkan menggunakan polat. Motivasi awal untuk pengenalan sistem kutub adalah mempelajari [[gerakan melingkar|melingkar]] dan [[gerakan orbital]].